Computer-aided diagnosis through biomedical image analysis is increasingly considered in health sciences. This is due to the progress made on the acquisition side, as well as on the processing one. In vivo visualization of human tissues where one can determine both anatomical and functional information is now possible. The use of these images with efficient intelligent mathematical and processing tools allows the interpretation of the tissues state and facilitates the task of the physicians. Segmentation and registration are the two most fundamental tools in bioimaging. The first aims to provide automatic tools for organ delineation from images, while the second focuses on establishing correspondences between observations inter and intra subject and modalities. In this paper, we present some recent results towards a common formulation addressing these problems, called the Markov Random Fields. Such an approach is modular with respect to the application context, can be easily extended to deal with various modalities, provides guarantees on the optimality properties of the obtained solution and is computationally efficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2009.5332535 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115.
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFACS Nano
January 2025
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal.
The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
CNRS, Univ. Bordeaux, CRPP, UMR 5031, Pessac, F-33600, France.
Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!