This paper presents an evaluation study on the feasibility of introducing wireless connection into a neurosurgical robot, which is controlled by an image-based navigation system. The wireless connection introduced into the robotic system is based on amplitude shift keying (ASK) at 60 GHz. With this wireless connection, data transmission at the bit-rate of 1 Gbps or more is possible, and here high-definition video images (1080i/1080p) can be transmitted. Such a wireless connection system is implemented in the surgical robot replaces the cable connection between the digital video camera and the controller. In this study, the wireless robotic surgical system is evaluated in terms of its accuracy of navigation using the transmitted video images. The results of a wireless connection test under a line-of-sight (LOS) environment show that navigation accuracy observed when using this wireless surgical robot is comparable to that when using a wired robotic system.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2009.5332400DOI Listing

Publication Analysis

Top Keywords

wireless connection
20
surgical robot
12
wireless
8
robotic system
8
video images
8
system
6
connection
6
feasibility study
4
study image-based
4
image-based control
4

Similar Publications

The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed.

View Article and Find Full Text PDF

This study investigated the implementation and impact of fifth-generation (5G) wireless millimeter wave (mmW) technology. 5G offers significant advancements over previous generations and supports additional frequency bands, including mmW, to enhance mobile broadband with ultra-reliable, low-latency communications, supporting a high volume of diverse communications. This technology is expected to enable billions of new connections in the Internet of Things (IoT), fostering innovations in various sectors including healthcare, manufacturing, and education.

View Article and Find Full Text PDF

The major task of a wireless sensor network (WSN) is data collection. Key predistribution (KP) is to establish pairwise keys for secure communication in a WSN, such that all collected data could be securely sent to a backend database. Most research on KP-like schemes is dedicated to enhancing resiliency against node capture attack (NA) and retaining the link connectivity in the meantime.

View Article and Find Full Text PDF

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

Wireless microwave-to-optical conversion via programmable metasurface without DC supply.

Nat Commun

January 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.

Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!