Capacitive on-line hematocrit sensor design based on impedance spectroscopy for use in hemodialysis machines.

Annu Int Conf IEEE Eng Med Biol Soc

HSG-IMIT, Institut für Mikro- und Informationstechnik der Hahn-Schickard-Gesellschaft e.V., 78052 Villingen-Schwenningen, Germany.

Published: April 2010

This paper presents a new design for an on-line and in-line hematocrit (HCT) sensor. Special feature of the sensor is the capability to measure the hematocrit of a blood sample inside standard plastic tubing widely used in medical equipment. No blood sample has to be extracted out of existing extracorporeal blood circulation systems such as hemodialysis machines or heart-lung machines. The sensor principle is based on electrical impedance spectroscopy. Dielectric properties of the blood and the plastic tubing are measured at various frequencies. In order to optimize the sensitivity, a unique electrode configuration is developed and optimized by Finite Element Simulation. The new electrode design optimizes the overall sensitivity of the sensor towards a change in dielectric properties of the blood caused by the HCT value and therefore decreases the sensitivity to side effects caused by temperature drift and component tolerances. As a result of the optimized overall sensor performance the complexity of a sensor readout circuitry can be reduced to a minimum which leads to an unmatched price-performance ratio for a complete measurement system.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2009.5332420DOI Listing

Publication Analysis

Top Keywords

impedance spectroscopy
8
hemodialysis machines
8
blood sample
8
plastic tubing
8
dielectric properties
8
properties blood
8
sensor
7
blood
5
capacitive on-line
4
on-line hematocrit
4

Similar Publications

Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.

View Article and Find Full Text PDF

Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.

View Article and Find Full Text PDF

The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.

View Article and Find Full Text PDF

Cooperative Dynamics and Hydration of Aqueous D-Mannitol and -Inositol.

J Phys Chem B

January 2025

Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany.

The cooperative dynamics and hydration of D-mannitol and yo-inositol in aqueous solution at 25 °C were investigated by broad-band dielectric relaxation spectroscopy (DRS) for solute concentrations < 0.9M. The recorded spectra, covering the frequency range 0.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!