Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model.

Biomaterials

Laboratory for Bone and Implant Sciences (LBIS), The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA.

Published: March 2010

In this study, we tested the potential of UV-photofunctionalized titanium surfaces to overcome compromised bone-titanium integration in a gap healing model. Titanium in rod and disk forms was acid etched and then stored for 4 weeks under dark ambient conditions. Titanium rods with and without UV pretreatment were placed into a rat femur with (contact healing) or without (gap healing) contact with the innate cortical bone. The titanium implants were subjected to a biomechanical push-in test, micro-CT bone morphometry, and surface elemental analysis after 2 weeks of healing. The strength of bone-titanium integration in the gap healing model was one-third of that in the contact healing model. However, UV-treated implants in the gap healing condition produced a strength of bone-titanium integration equivalent to that of untreated implants in the contact healing condition. Bone volume around UV-treated implants was 2- to 3-fold greater than that around the untreated implants in the gap healing model. A bone generation profile drawn along the long axis of the implant exhibited greater contrast between the untreated and UV-treated surfaces in the cortical area than in the bone marrow area. The bone tissue formed on UV-treated implants showed a higher Ca/P ratio than that formed on untreated titanium. The rate of cell proliferation, alkaline phosphatase activity, and calcium deposition in femoral periosteal cells and in bone marrow-derived osteoblasts were greater in cultures on UV-treated titanium disks than in cultures on untreated disks. The UV-enhanced function in periosteal cells was more pronounced when they were co-cultured with bone marrow-derived osteoblasts, indicating a synergistic effect of UV-treated titanium with biological signals from bone marrow-derived osteoblasts. Within the limitation of the model used in this study, UV-photofunctionalized titanium surfaces may overcome the challenging condition of bone-titanium integration without cortical bone support. UV treatment of implants induced marked improvements in the behavior of bone formation and quantity and quality of bone tissue around the implants. These effects may be related to the promoted function of both periosteum- and bone marrow-derived osteogenic cells at the local level around UV-treated titanium surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2009.11.018DOI Listing

Publication Analysis

Top Keywords

gap healing
24
bone-titanium integration
20
healing model
20
bone marrow-derived
16
bone
13
uv-photofunctionalized titanium
12
titanium surfaces
12
contact healing
12
uv-treated implants
12
marrow-derived osteoblasts
12

Similar Publications

Objective: The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration.

View Article and Find Full Text PDF

Metastasis is the trigger of death in anaplastic thyroid cancer (ATC) patients, yet the specific mechanisms at play are still largely enigmatic. While the involvement of LARP1 in the metastatic process of various cancers has been documented, there is a noticeable gap in the literature regarding its potential influence on ATC metastasis. Molecular studies probed LARP1 expression within ATC cells, with subsequent in vitro experiments examining the effects of LARP1 on ATC cell metastasis and the mTOR signaling cascade.

View Article and Find Full Text PDF

Introduction: Lymphedema, a debilitating characterized by localized fluid retention and tissue swelling, results from abnormalities in the lymphatic system. In the case of primary lymphedema, this condition is attributed to malformations in lymphatic vessels or nodes, and it is marked by a relentless progression leading to irreversible tissue fibrosis after repetitive inflammation. Many questions regarding its treatment, such as the choice of the type of intervention and the timing, still remain unanswered.

View Article and Find Full Text PDF

Radicular cysts are rarely present in the primary dentition because of the distinct biological cycle of primary teeth. Cyst formation in children may cause bony expansion and resorption, malposition, delayed eruption, enamel defects, or damage to the developing permanent successors. Various treatment modalities for the management of radicular cysts have been reported in the literature.

View Article and Find Full Text PDF

Mast Cells and Arteriogenesis: A Systematic Review.

Cardiovasc Pathol

January 2025

Department of Anatomical Sciences, St. George's University, School of Medicine, Grenada, West Indies; Department of Pathology, St. George's University, School of Medicine, Grenada, West Indies; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:

Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!