A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pathological assessment of patients' speech signals using nonlinear dynamical analysis. | LitMetric

Acoustic analysis of voice features can complete the invasive observation-based methods for the diagnosis of vocal fold pathologies. Selection of an appropriate feature extraction method from the voice can significantly improve the diagnostic results for patients with vocal disorders. In this paper, the performance of nonlinear dynamics and acoustical perturbation features is evaluated in order to distinguish patients with vocal fold disorder and other normal cases. As a matter of fact, vocal fold pathology is one of the major causes of voice quality reduction or feature variation in patients with dysphonic voices. Due to the devastating impact of vocal folds dysfunction on the complex dynamical structure of the speech signals, spectral analysis methods are not suitable for characterizing such changes in disordered voices. Therefore, the using measures that can reflect the nonlinear nature of such changes in the acoustical signals is an efficient alternative for the conventional methods. In order to compare and contrast the effectiveness of such approaches, we exploit features such as correlation dimension, the largest Lyapunov exponent, approximate entropy, fractal dimension and Ziv-Lempel complexity, and we also evaluate their performance with respect to some conventional features like jitter and shimmer, in the voice diagnosis task. Using the support vector machine classifier, our simulation results show that correlation dimension and the largest Lyapunov exponent features with the highest recognition rates of 94.44% and 88.89% can be used as a highly reliable method for the clinical diagnosis of vocal folds pathologies and other relevant applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2009.10.011DOI Listing

Publication Analysis

Top Keywords

vocal fold
12
speech signals
8
diagnosis vocal
8
patients vocal
8
vocal folds
8
correlation dimension
8
dimension largest
8
largest lyapunov
8
lyapunov exponent
8
vocal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!