A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Information content based model for the topological properties of the gene regulatory network of Escherichia coli. | LitMetric

Information content based model for the topological properties of the gene regulatory network of Escherichia coli.

J Theor Biol

Department of Physics, Faculty of Sciences and Letters, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.

Published: April 2010

Gene regulatory networks (GRN) are being studied with increasingly precise quantitative tools and can provide a testing ground for ideas regarding the emergence and evolution of complex biological networks. We analyze the global statistical properties of the transcriptional regulatory network of the prokaryote Escherichia coli, identifying each operon with a node of the network. We propose a null model for this network using the content-based approach applied earlier to the eukaryote Saccharomyces cerevisiae (Balcan et al., 2007). Random sequences that represent promoter regions and binding sequences are associated with the nodes. The length distributions of these sequences are extracted from the relevant databases. The network is constructed by testing for the occurrence of binding sequences within the promoter regions. The ensemble of emergent networks yields an exponentially decaying in-degree distribution and a putative power law dependence for the out-degree distribution with a flat tail, in agreement with the data. The clustering coefficient, degree-degree correlation, rich club coefficient and k-core visualization all agree qualitatively with the empirical network to an extent not yet achieved by any other computational model, to our knowledge. The significant statistical differences can point the way to further research into non-adaptive and adaptive processes in the evolution of the E. coli GRN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2009.11.017DOI Listing

Publication Analysis

Top Keywords

gene regulatory
8
regulatory network
8
escherichia coli
8
promoter regions
8
binding sequences
8
network
6
content based
4
based model
4
model topological
4
topological properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!