In photon-beam radiotherapy, the absorbed dose in an irradiated object contains a contribution by energy-degraded photons originating from Compton scatter processes at parts of the treatment head and within the absorber itself. These low-energy spectral components may lead to changes in the response of non-ideally water-equivalent radiation detectors, such as Si diodes and radiographic films, in the water/tissue dose conversion factors and in the relative biological effectiveness (RBE). As a simple means of accounting for these changes in spectral quality, the Monte Carlo calculated fraction of the kerma or absorbed dose contributed by scattered photons with energies not exceeding a certain cut-off value has previously been proposed as a useful parameter. In this paper, we present an equivalent experimental approach, providing a means for the spatial mapping of radiation quality. Its applicability will be demonstrated for the case of (60)Co and 6 MV photons. A twin-chamber combination of a Farmer type ionization chamber, equipped with a graphited PMMA outer electrode, and a chamber of the same design, but with an outer electrode made from copper, has been developed. The measured quantity is the signal ratio (SR) of the copper wall and graphited wall chambers. A correlation between the SR and the fraction of the air kerma respectively of the absorbed dose to water, contributed by photons with energies not exceeding 200 keV, has been established at a Theratron 780-C (60)Co teletherapy unit and at a Siemens Primus 6 MV linear accelerator. We also describe a two-dimensional version of the twin-chamber method using the PTW 2D-Array 256. Typical trends of parameter SR with depth and off-axis distance in water-equivalent phantoms have been observed. Thereby, a simple experimental method for the space-resolved assessment of the dose fraction attributable to low-energy Compton scattered photons can be presented as an innovative instrument of describing radiation quality in radiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zemedi.2009.05.006 | DOI Listing |
Unlabelled: Atomic coordinate models are important in the interpretation of 3D maps produced with cryoEM and sub-tomogram averaging in cryoET, or more generically, 3D electron microscopy (3DEM). In addition to visual inspection of such maps and models, quantitative metrics convey the reliability of the atomic coordinates, in particular how well the model is supported by the experimentally determined 3DEM map. A recently introduced metric, Q-score, was shown to correlate well with the reported resolution of the map for well-fitted models.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034 Warsaw, Poland.
Background And Purpose: Pediatric radiotherapy patients and their parents are usually aware of their need for radiotherapy early on, but they meet with a radiation oncologist later in their treatment. Consequently, they search for information online, often encountering unreliable sources. Large language models (LLMs) have the potential to serve as an educational pretreatment tool, providing reliable answers to their questions.
View Article and Find Full Text PDFInt J Biomed Imaging
January 2025
Medical Imaging Sciences Department, College of Health Sciences, Gulf Medical University, Ajman, UAE.
The quality of CT images obtained from hepatocellular carcinoma (HCC) patients is complex, affecting diagnostic accuracy, precision, and radiation dose assessment due to increased exposure risks. The study evaluated image quality qualitatively and quantitatively by comparing quality levels with an effective radiation dose to ensure acceptable quality accuracy. This study retrospectively reviewed 100 known HCC patients (Li-RADS-5) who underwent multidetector computed tomography (MDCT) multiphasic scans for follow-up of their health condition between January and October 2023.
View Article and Find Full Text PDFAME Case Rep
November 2024
Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Background: Endometrial stromal sarcomas (ESS) are rare uterine mesenchymal tumors that histologically resemble endometrial stroma of functioning endometrium. The key characteristic of those tumors is the difficulty to diagnose preoperatively that leads to high rate of misdiagnosis. The aim of this case report is to present an extremely rare mutation of these already rare tumors and urge for more personalized therapies in the future.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!