Folding and oligomerization of integral membrane proteins frequently depend on specific interactions of transmembrane helices. Interacting amino acids of helix-helix interfaces may form complex motifs and exert different types of molecular forces. Here, a set of strongly self-interacting transmembrane domains (TMDs), as isolated from a combinatorial library, was found to contain basic and acidic residues, in combination with polar nonionizable amino acids and C-terminal GxxxG motifs. Mutational analyses of selected sequences and reconstruction of high-affinity interfaces confirmed the cooperation of these residues in homotypic interactions. Probing heterotypic interaction indicated the presence of interhelical charge-charge interactions. Furthermore, simple motifs of an ionizable residue and GxxxG are significantly overrepresented in natural TMDs, and a specific combination of these motifs exhibits high-affinity heterotypic interaction. We conclude that intramembrane charge-charge interactions depend on sequence context. Moreover, they appear important for homotypic and heterotypic interactions of numerous natural TMDs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2009.11.054DOI Listing

Publication Analysis

Top Keywords

sequence context
8
amino acids
8
heterotypic interaction
8
charge-charge interactions
8
natural tmds
8
interactions
5
ionic interactions
4
interactions promote
4
promote transmembrane
4
transmembrane helix-helix
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!