Chemical approaches to cell surface engineering have emerged as powerful tools for resurfacing the molecular landscape of cells and tissues. Here we report a new strategy for re-engineering cell surfaces through electrostatic adsorption of appropriately structured and functionalized poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) copolymers to cellular interfaces. Grafting of methoxy terminated tetra(ethylene glycol) chains to PLL abrogated polycation cytotoxicity in a charge density and PEG dependent manner, and copolymers structured with a unique balance of grafted PEG chains and free lysine monomers adsorbed to cell surfaces without compromising viability. Structurally analogous PLL-g-PEG copolymers bearing terminally functionalized PEG grafts were used as 'cell surface active' polymeric carriers for biotin, hydrazide, and azide moieties, which selectively captured streptavidin-, aldehyde-, and cyclooctyne-labeled probes, respectively, on cell surfaces. This strategy opens new opportunities in cell surface engineering, including generation of unique cell surface motifs, rapid and combinatorial surface modification, and use of biologically complex solvents. Tailored PLL-g-PEG copolymers offer a promising and enabling tool for bio/chemically remodeling cells and tissues with broad potential in biomedical and biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja908887v | DOI Listing |
J Prosthodont
January 2025
Prosthodontist, Implant Dentistry Associates of Arlington, Arlington, Texas, USA.
Purpose: The purpose of this study was to analyze gingival fibroblast proliferation on additively manufactured polymethylmethacrylate (PMMA) groups with different surface characteristics namely no treatment group (NTG) and customized 250 µm diameter porosity (AM-250G) group.
Materials And Methods: 3D-printed NTG was compared for its influence on growth of cells to a additively manufactured surface with porosity (AM-250G). For each group (NTG, AM-250G) 20 samples of material were tested.
Sci Rep
January 2025
Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.
View Article and Find Full Text PDFSci Rep
January 2025
International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China.
Extracellular vesicles (EVs) are not only involved in cell-to-cell communications but have other functions as "garbage bags", as bringing nutrients to cells, and as inducing mineral during bone formation and ectopic calcification. These minuscule entities significantly contribute to the regulation of bodily functions. However, the clinical application of EVs faces challenges due to limited production yield and targeting efficiency.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China. Electronic address:
The existence of ochratoxin A (OTA) in agricultural products poses significant threats to human health and environment, underscoring the critical need for its prompt and precise quantification. A particle counting immunosensor for the highly sensitive detection of OTA was presented, employing SiO@CuO nanoparticles to facilitate click chemistry. The quantity of SiO@CuO nanoparticles, and consequently the Cu²⁺ concentration, can be directly altered through the immune response involving OTA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!