The exact knowledge of the qualitative and quantitative protein components of rice bran is an essential aspect to be considered for a better understanding of the functional properties of this resource. Aim of the present investigation was to extract the largest number of rice bran proteins and to obtain their qualitative characterization. For this purpose, three different extraction protocols have been applied either on full-fat or on defatted rice bran. Likewise, to identify the highest number of proteins, MS data collected from 1-DE, 2-DE and gel-free procedures have been combined. These approaches allowed to unambiguously identify 43 proteins that were classified as signalling/regulation proteins (30%), proteins with enzymatic activity (30%), storage proteins (30%), transfer (5%) and structural (5%) proteins. The fact that all extraction and identification procedures have been performed in triplicate with an excellent reproducibility provides a rationale for considering the platform of proteins shown in this study as the potential proteome profile of rice bran. It also represents a source of information to evaluate better the qualities of rice bran as food resource.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200900469DOI Listing

Publication Analysis

Top Keywords

rice bran
20
profile rice
8
proteins
8
proteins 30%
8
rice
6
bran
6
deciphering proteomic
4
proteomic profile
4
rice oryza
4
oryza sativa
4

Similar Publications

Gryllus madagascarensis (Orthoptera: Gryllidae) is a cricket species that shows promise to mitigate food insecurity and malnutrition. But whether this species will accept low- to no-cost weeds and agro by-products as feed, and how these feeds affect its performance, remains unknown. This study assessed the acceptability of 66 weed species and agro by-products (derived from a single plant species) by adult G.

View Article and Find Full Text PDF

In this study, green tea extract (GTE) and/or ethylenediaminetetraacetic acid (EDTA) were incorporated into the expeller-pressed high oleic soybean oil (EPHOSO) oleogel and their antioxidative activity on the oleogel oxidation was investigated. Electron paramagnetic resonance (EPR) confirmed that heating EPHOSO at 90 °C for 30 min during oleogel preparation did not accelerate free radical formation. Moreover, the addition of GTE at 300 ppm significantly reduced the levels of both free radicals and lipid hydroperoxides, effectively extending the lag phase by 5 days.

View Article and Find Full Text PDF

Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network.

Food Chem

December 2024

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na], [TG + NH].

View Article and Find Full Text PDF

Assessing metal-induced glycation in French fries.

Metallomics

December 2024

Department of Environmental and Physical Sciences, Faculty of Science.

Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.

View Article and Find Full Text PDF

pH-sensitive chitosan/sodium alginate/calcium chloride hydrogel beads for potential oral delivery of rice bran bioactive peptides.

Food Chem

December 2024

Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. Electronic address:

Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!