Objective: High concentrations of circulating glucose are believed to contribute to defective insulin secretion and beta-cell function in diabetes and at least some of this effect appears to be caused by glucose-induced beta-cell apoptosis. In mammalian cells, apoptotic cell death is controlled by the interplay of proapoptotic and antiapoptotic members of the Bcl-2 family. We investigated the apoptotic pathway induced in mouse pancreatic islet cells after exposure to high concentrations of the reducing sugars ribose and glucose as a model of beta-cell death due to long-term metabolic stress.
Research Design And Methods: Islets isolated from mice lacking molecules implicated in cell death pathways were exposed to high concentrations of glucose or ribose. Apoptosis was measured by analysis of DNA fragmentation and release of mitochondrial cytochrome c.
Results: Deficiency of interleukin-1 receptors or Fas did not diminish apoptosis, making involvement of inflammatory cytokine receptor or death receptor signaling in glucose-induced apoptosis unlikely. In contrast, overexpression of the prosurvival protein Bcl-2 or deficiency of the apoptosis initiating BH3-only proteins Bim or Puma, or the downstream apoptosis effector Bax, markedly reduced glucose- or ribose-induced killing of islets. Loss of other BH3-only proteins Bid or Noxa, or the Bax-related effector Bak, had no impact on glucose-induced apoptosis.
Conclusions: These results implicate the Bcl-2 regulated apoptotic pathway in glucose-induced islet cell killing and indicate points in the pathway at which interventional strategies can be designed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828664 | PMC |
http://dx.doi.org/10.2337/db09-1151 | DOI Listing |
Mitochondria maintain a biochemical environment that cooperates with BH3-only proteins (e.g., BIM) to potentiate BAX activation, the key event to initiate physiological and pharmacological forms of apoptosis.
View Article and Find Full Text PDFCell Death Dis
December 2024
Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
Apoptosis-regulating proteins from the B-cell lymphoma-2 (BCL-2) family are of continued interest as they represent promising targets for anti-cancer therapies. Myeloid cell leukemia-1 (MCL-1), which usually refers to the long isoform (MCL-1L) is frequently overexpressed in various types of cancer. However, MCL1 pre-mRNA can also undergo alternative splicing through exon skipping to yield the short isoform, MCL-1S.
View Article and Find Full Text PDFNat Commun
October 2024
Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
Cell Death Differ
October 2024
Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA.
Apoptosis is a fundamental process of all mammalian cells but exactly how it is regulated in different primary cells remains less explored. In most contexts, apoptosis is engaged to eliminate cells. However, postmitotic cells such as neurons must efficiently balance the need for developmental apoptosis versus the physiological needs for their long-term survival.
View Article and Find Full Text PDFCell Death Differ
October 2024
Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
BCL-2 family proteins regulate apoptosis by initiating mitochondrial outer membrane permeabilization (MOMP). Activation of the MOMP effectors BAX and BAK is controlled by the interplay of anti-apoptotic BCL-2 proteins (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!