Background: Some of the postulated molecular mechanisms of sepsis progression are linked with the imbalance between reactive oxygen species (ROS) production and its degradation by cellular antioxidant pathways. Some studies have correlated plasma oxidative stress, inflammatory markers, and clinical markers of organ failure, but none performed this in a systematic way, determining in situ oxidative and inflammatory markers and correlating these with markers of organ failure.

Materials And Methods: Rats subjected to cecal ligation and puncture (CLP) were treated with basic support or antioxidants and killed 12 h after to determine thiobarbituric acid reactive species (as an index of oxidative damage), superoxide dismutase (SOD), catalase (CAT), and myeloperoxidase (MPO) (as an index of neutrophil infiltration) in the kidney and lung. In addition, protein content in bronchoalveolar lavage fluid (as an index of lung alveolo-capillary dysfunction) and plasma urea (as an index of kidney injury) were measured at the same time.

Results: In the CLP group, we found a positive correlation between thiobarbituric acid reactive species (TBARS) and markers of organ injury in lung and kidney. Oxidative damage is correlated with an increase in SOD/CAT ratio only in the lung. In contrast, oxidative damage is correlated with MPO activity in the kidney, but not lung, suggesting different sources of oxidative damage depending on the analyzed organ. These reflect differences on the effects of basic support and antioxidants on organ dysfunction after sepsis.

Conclusion: Despite the general occurrence of oxidative damage in different organs during sepsis development and a positive correlation between oxidative markers and organ injury, antioxidant effects seemed to depend not only on the diminution of oxidative damage but also on its anti-inflammatory activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2009.08.005DOI Listing

Publication Analysis

Top Keywords

oxidative damage
24
markers organ
16
oxidative
10
organ failure
8
neutrophil infiltration
8
oxidative stress
8
inflammatory markers
8
basic support
8
support antioxidants
8
thiobarbituric acid
8

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Effect of plasma free fatty acids on lung function in male COPD patients.

Sci Rep

January 2025

Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Inflammation and oxidative stress play a pivotal role in COPD pathogenesis. Free fatty acids (FFA) as signaling molecules through a series of G-proteins coupled receptors, play an important role in regulation of the immune system and oxidative stress. For this reason, we decided to investigate the profile of FFA in the plasma in the COPD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!