Tissue factor (TF) is upregulated in several malignant diseases, including gliomas. Here, we demonstrate pronounced differences in the expression of TF and its interactors factor VII and protease-activated receptor 2 (PAR-2) in nine human glioma cell lines (U87, U251, U343, U373, MZ-18, MZ-54, MZ-256, MZ-304, Hs 683) as detected by RT-PCR and Western blot analysis. Inhibition of TF signaling by a neutralizing monoclonal antibody (mAb TF9-10H10) led to significantly reduced proliferation in high-grade astroglial (MZ-18 and MZ-304) and oligodendroglial (Hs 683) cell lines abundantly expressing TF, but not in U373 cells expressing low amounts of TF. Scratch migration assays and Boyden chamber assays indicated that mAb TF9-10H10 and lentiviral knockdown of TF significantly reduced cell migration and invasion of MZ-18, MZ-304 and Hs 683 cells, both under normoxic and hypoxic conditions. Of note, all three cell lines displayed increased cell migration and invasion under hypoxic conditions (1% O(2)), which was associated with enhanced expression of TF and increased phosphorylation of p44/42 mitogen-activated protein kinase (ERK1/2). Silencing of TF blocked activation of the ERK pathway, induction of TF expression and the potentiating effect of hypoxia on cell migration and invasion. RNA interference against PAR-2 abrogated the autocrine effects of TF on cell proliferation, migration and invasion, indicating that TF signals via PAR-2 in glioma cells. Our results suggest an important role for the TF/FVIIa/PAR-2/ERK axis in tumor growth and invasion of glioma and suggest that TF may be a suitable target for the development of novel therapies against high-grade glioma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2009.11.049DOI Listing

Publication Analysis

Top Keywords

migration invasion
20
cell lines
12
cell migration
12
proliferation migration
8
glioma cells
8
mz-304 683
8
mab tf9-10h10
8
mz-18 mz-304
8
hypoxic conditions
8
cell
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!