Background: Eukaryotic genomes are packaged into chromatin, a compact structure containing fundamental repeating units, the nucleosomes. The mobility of nucleosomes plays important roles in many DNA-related processes by regulating the accessibility of regulatory elements to biological machineries. Although it has been known that various factors, such as DNA sequences, histone modifications, and chromatin remodelling complexes, could affect nucleosome stability, the mechanisms of how they regulate this stability are still unclear.

Results: In this paper, we propose a novel computational method based on rule induction learning to characterize nucleosome dynamics using both genomic and histone modification information. When applied on S. cerevisiae data, our method produced totally 98 rules characterizing nucleosome dynamics on chromosome III and promoter regions. Analyzing these rules we discovered that, some DNA motifs and post-translational modifications of histone proteins play significant roles in regulating nucleosome stability. Notably, these DNA motifs are strong determinants for nucleosome forming and inhibiting potential; and these histone modifications have strong relation with transcriptional activities, i.e. activation and repression. We also found some new patterns which may reflect the cooperation between these two factors in regulating the stability of nucleosomes.

Conclusion: DNA motifs and histone modifications can individually and, in some cases, cooperatively regulate nucleosome stability. This suggests additional insights into mechanisms by which cells control important biological processes, such as transcription, replication, and DNA repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788380PMC
http://dx.doi.org/10.1186/1471-2164-10-S3-S27DOI Listing

Publication Analysis

Top Keywords

nucleosome dynamics
12
histone modifications
12
nucleosome stability
12
dna motifs
12
characterizing nucleosome
8
dynamics genomic
8
rule induction
8
induction learning
8
nucleosome
6
dna
5

Similar Publications

Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.

View Article and Find Full Text PDF

Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.

View Article and Find Full Text PDF

Neutrophils and neutrophil extracellular traps (NETs) contribute to thrombosis and hyperinflammation in myeloproliferative neoplasms (MPN). High-density neutrophils (HDNs) and low-density neutrophils (LDNs) have recently been characterized as distinct neutrophil sub-populations with distinct morphological and functional properties. We aim to study the kinetics of NET formation and inhibition with interferon-α (IFNα) in neutrophils derived from patients with MPN as compared to matched healthy controls.

View Article and Find Full Text PDF

Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.

View Article and Find Full Text PDF

Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!