Drought stress significantly enhanced the capacity of the alternative respiratory pathway and induced AOX1a and AOX1b transcripts in rice seedling leaves. The drought-stressed seedlings pretreated with the inhibitor of the alternative respiratory pathway, 1 mM salicylhydroxamic acid, had a lower level of relative water content than the seedlings either subjected to drought or salicylhydroxamic acid treatment alone. This observation suggests that the alternative respiratory pathway could play a role in the tolerance of rice seedlings to drought stress. Pretreatment with exogenous hydrogen peroxide, salicylic acid, and abscisic acid alone mitigated the water loss of rice leaves exposed to drought stress. Exogenous application of hydrogen peroxide and salicylic acid increased the capacity of the alternative respiratory pathway and induced AOX1a and AOX1b transcripts, while exogenous abscisic acid failed to induce any expression of AOX1 genes. These observations suggest that rice AOX1a and AOX1b genes may be responsive especially to drought stress but not be induced by all of the stress signals related to drought.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2009-9-1016DOI Listing

Publication Analysis

Top Keywords

drought stress
20
alternative respiratory
16
respiratory pathway
16
aox1a aox1b
12
tolerance rice
8
seedlings drought
8
capacity alternative
8
pathway induced
8
induced aox1a
8
aox1b transcripts
8

Similar Publications

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.

View Article and Find Full Text PDF

RNA plays important roles in the regulation of gene expression in response to environmental stimuli. , a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in . There are three mechanisms through which fine tunes the transcriptional response to cold temperatures.

View Article and Find Full Text PDF

Aflatoxin B1 Contamination Association with the Seed Coat Biochemical Marker Polyphenol in Peanuts Under Intermittent Drought.

J Fungi (Basel)

December 2024

Department of Agriculture, Agribusiness, and Environmental Sciences, Texas A&M University, 700 University Blvd, MSC 228, Kingsville, TX 78363, USA.

Aflatoxin B1 (AFB1) contamination (AC) increases as the severity of drought stress increases in peanuts. Identifying drought-tolerant (DT) genotypes with resistance to colonization and/or infection may aid in developing peanuts resistant to aflatoxin contamination in the semi-arid tropics. The goal of this study is to identify DT genotypes with seed coat biochemical resistance to infestation and aflatoxin contamination.

View Article and Find Full Text PDF

Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!