Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used alpha-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of beta-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and alpha-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-009-0421-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!