Background/aims: To determine whether genetic alterations in the CD9 gene are associated with female infertility in humans.
Methods: We sequenced the entire coding region of this gene in 86 Japanese women with unexplained infertility and further conducted a case-control study of six tagging single nucleotide polymorphisms (SNPs) in this gene using an additional 164 samples obtained from a fertile control group.
Results: No disease-causing mutation in the CD9 gene was evident in these samples and no significant association between the tagging SNPs and the studied cohort was identified.
Conclusions: Our findings do not support the hypothesis that genetic alterations of the CD9 gene cause female infertility in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000262451 | DOI Listing |
J Dent Sci
January 2025
Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan.
Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Department of Pathology, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, China.
Objective: To investigate the effects of the exosomal miR-494 targeting phospholipinositol 3-kinase (PI3K)/protein kinase B (AKT)/rapamycin target protein (mTOR) pathway on proliferation, migration, and invasion of trophoblast cells.
Methods: Decidual macrophages were randomly divided into control group, mimic NC group, miR-494 mimic group, inhibitor NC group, and miR-494 inhibitor group. Each group was transfected with corresponding miR-494 mimic NC, miR-494 mimic, and inhibitor NC and miR-494 inhibitor, while the cells of control group were only replaced with fresh medium.
Redox Biol
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China. Electronic address:
Objective: Renal ischemia-reperfusion (I/R) injury triggers significant oxidative stress and inflammation, leading to tubular epithelial cell (TEC) damage. This study investigates the protective role of Desflurane (DFE) in renal I/R by modulating the ITGB1/CD9 signaling pathway and mitigating oxidative damage.
Methods: Single-cell RNA sequencing (scRNA-seq) and transcriptome analysis identified ITGB1 as a key regulatory gene in TECs during renal I/R.
J Transl Med
January 2025
The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China.
Chronic liver diseases are highly linked with mitochondrial dysfunction and macrophage infiltration. Mallory-Denk bodies (MDBs) are protein aggregates associated with hepatic inflammation, and MDBs pathogenesis could be induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Here, we investigate the macrophage heterogeneity and the role of macrophage during MDBs pathogenesis on DDC-induced MDBs mouse model by single-nucleus RNA sequencing (snRNA-seq).
View Article and Find Full Text PDFESMO Open
January 2025
Yale Cancer Center, Yale School of Medicine, New Haven, USA. Electronic address:
Background: Natural killer (NK) cells are important contributors to antitumor immunity in clear-cell renal cell carcinoma (ccRCC). However, their phenotype, function, and association with clinical outcomes in ccRCC remain poorly understood.
Materials And Methods: We analyzed single-cell RNA sequencing data from 13 primary tumors, 1 localized tumor extension, and 1 metastasis from ccRCC patients at different clinical stages.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!