The pathogenesis of Huntington's disease (HD) remains elusive. The identification of increasingly early pathophysiological abnormalities in HD suggests the possibility that impairments of striatal medium spiny neuron (MSN) specification and maturation may underlie the etiology of HD. In fact, we demonstrate that HD knock-in (Hdh-Q111) mice exhibited delayed acquisition of early striatal cytoarchitecture with aberrant expression of progressive markers of MSN neurogenesis (Islet1, DARPP-32, mGluR1, and NeuN). Hdh-Q111 striatal progenitors also displayed delayed cell cycle exit between E13.5-15.5 (BrdU birth-dating) and an enhanced fraction of abnormal cycling cells in association with expansion of the pool of intermediate progenitors and over expression of the core pluripotency (PP) factor, Sox2. Clonal analysis further revealed that Hdh-Q111 neural stem cells (NSCs) displayed: impaired lineage restriction, reduced proliferative potential, enhanced late-stage self-renewal, and deregulated MSN subtype specification. Further, our analysis revealed that in addition to Sox2, the core PP factor, Nanog is expressed within the striatal generative and mantle regions, and in Hdh-Q111 embryos the fraction of Nanog-expressing MSN precursors was substantially increased. Moreover, compared to Hdh-Q18 embryos, the Hdh-Q111 striatal anlagen exhibited significantly higher levels of the essential PP cofactor, Stat3. These findings suggest that Sox2 and Nanog may play roles during a selective window of embryonic brain maturation, and alterations of these factors may, in part, be responsible for mediating the aberrant program of Hdh-Q111 striatal MSN specification and maturation. We propose that these HD-associated developmental abnormalities might compromise neuronal homeostasis and subsequently render MSNs more vulnerable to late life stressors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799796 | PMC |
http://dx.doi.org/10.1073/pnas.0912171106 | DOI Listing |
Sci Rep
January 2024
Neurodegenerative Diseases Research Unit, Biogen, 225 Binney Street, Cambridge, MA, 02142, USA.
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the HTT gene. In addition to germline CAG expansions, somatic repeat expansions in neurons also contribute to HD pathogenesis. The DNA mismatch repair gene, MSH3, identified as a genetic modifier of HD onset and progression, promotes somatic CAG expansions, and thus presents a potential therapeutic target.
View Article and Find Full Text PDFAutophagy Rep
January 2023
Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States.
Many neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an Hdh mutant mouse.
View Article and Find Full Text PDFNeural Regen Res
November 2021
Department of Anatomy, University of Otago, Dunedin, New Zealand.
A review of recent animal models of Huntington's disease showed many microRNAs had altered expression levels in the striatum and cerebral cortex, and which were mostly downregulated. Among the altered microRNAs were miR-9/9*, miR-29b, miR-124a, miR-132, miR-128, miR-139, miR-122, miR-138, miR-23b, miR-135b, miR-181 (all downregulated) and miR-448 (upregulated), and similar changes had been previously found in Huntington's disease patients. In the animal cell studies, the altered microRNAs included miR-9, miR-9*, miR-135b, miR-222 (all downregulated) and miR-214 (upregulated).
View Article and Find Full Text PDFSci Rep
July 2017
Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
Huntington's disease (HD) is a neurodegenerative disorder whose major symptoms include progressive motor and cognitive dysfunction. Cognitive decline is a critical quality of life concern for HD patients and families. The enzyme histone deacetylase 3 (HDAC3) appears to be important in HD pathology by negatively regulating genes involved in cognitive functions.
View Article and Find Full Text PDFFront Mol Neurosci
June 2017
Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.
Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!