Cochlear hair cells transduce mechanical stimuli into electrical activity. The site of hair cell transduction is the hair bundle, an array of stereocilia with different height arranged in a staircase. Tip links connect the apex of each stereocilium to the side of its taller neighbor. The hair bundle and tip links of hair cells are susceptible to acoustic trauma and ototoxic drugs. It has been shown that hair cells in lower vertebrates and in the mammalian vestibular system may survive bundle loss and undergo self-repair of the stereocilia. Our goals were to determine whether cochlear hair cells could survive the trauma and whether the tip link and/or the hair bundle could be regenerated. We simulated the acoustic trauma-induced tip link damage or stereociliary loss by disrupting tip links or ablating the hair bundles in the cultured organ of Corti from neonatal gerbils. Hair-cell fate and stereociliary morphology and function were examined using confocal and scanning electron microscopies and electrophysiology. Most bundleless hair cells survived and developed for approximately 2 weeks. However, no spontaneous hair-bundle regeneration was observed. When tip links were ruptured, repair of tip links and restoration of mechanotransduction were observed in <24 h. Our study suggests that the dynamic nature of the hair cell's transduction apparatus is retained despite the fact that regeneration of the hair bundle is lost in mammalian cochlear hair cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795320PMC
http://dx.doi.org/10.1523/JNEUROSCI.3231-09.2009DOI Listing

Publication Analysis

Top Keywords

hair cells
24
cochlear hair
12
hair bundle
12
hair
11
cells
6
links
5
fate mammalian
4
mammalian cochlear
4
stereocilia
4
cells stereocilia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!