Nanoscale sensing arrays utilizing the unique properties of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots are being developed for toxin detection applications. This paper describes an innovative method to activate bacteriorhodopsin-based electrodes with the optical output of quantum dots, producing an enhanced electrical response from the protein. Results show that the photonic emission of CdSe/ZnS quantum dots is absorbed by the bacteriorhodopsin retinal and initiates the proton pumping sequence, resulting in an electrical output from a bacteriorhodopsin-based electrode. It is also shown that activated quantum dots in sub-10nm proximity to bacteriorhodopsin further amplify the photovoltaic response of the protein by approximately 23%, compared to without attached quantum dots, suggesting direct energy transfer mechanisms beyond photonic emission alone. The ability of quantum dots to activate nanoscale regions on bacteriorhodopsin-based electrodes could allow sub-micron sensing arrays to be created due to the ability to activate site-specific regions on the array.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2009.11.005 | DOI Listing |
Nat Phys
December 2024
QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr QDs by coupling them to a high quality () factor SiO microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Materials Synthesis Laboratory, Carbon Tech Industrial Group, Carbon Tech, Tehran, Iran.
Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departmento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil. Electronic address:
Mannose-binding lectin (MBL) is an important glycoprotein of the human innate immune system. Furthermore, individuals with sickle cell anemia (SCA) and MBL deficiency seem more susceptible to vaso-occlusive crises, suggesting an MBL role on HbSS red blood cells (RBCs). This study investigated the interaction of MBL with HbA (healthy) and HbSS RBCs using optical tweezers (OT) and atomic force microscopy (AFM).
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!