Isolation of plasma membrane vesicles from mouse placenta at term and measurement of system A and system beta amino acid transporter activity.

Placenta

Maternal and Fetal Health Research Group, School of Clinical and Laboratory Sciences, University of Manchester, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom.

Published: January 2010

Placental amino acid transport is essential for optimal fetal growth and development, with a reduced fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR). Understanding placental insufficiency related FGR has been aided by the development of mouse models that have features of the human disease. However, to take maximal advantage of these, methods are required to study placental function in the mouse. Here, we report a method to isolate plasma membrane vesicles from mouse placenta near-term and have used these to investigate two amino acid transporters, systems A and beta, the activities of which are reduced in human placental microvillous plasma membrane (MVM) vesicles from FGR pregnancies. Plasma membrane vesicles were isolated at embryonic day 18 by a protocol involving homogenisation, MgCl(2) precipitation and centrifugation. Vesicles were enriched 11.3+/-0.5-fold in alkaline phosphatase activity as compared to initial homogenate, with minimal intracellular organelle contamination as judged by marker analyses. Cytochemistry revealed alkaline phosphatase was localised between trophoblast layers I and II, with intense reaction product deposited on the maternal-facing plasma membrane of layer II, suggesting that vesicles were derived from this trophoblast membrane. System A and system beta activity in mouse placental vesicles, measured as Na(+)-dependent uptake of (14)C-methylaminoisobutyric acid (MeAIB) and (3)H-taurine respectively confirmed localisation of these transporters to the maternal-facing plasma membrane of layer II. Comparison to human placental MVM showed that system A activity was comparable at initial rate between species whilst system beta activity was significantly lower in mouse. This mirrored the lower expression of TAUT observed in mouse placental vesicles. We conclude that syncytiotrophoblast layer II-derived plasma membrane vesicles can be isolated and used to examine transporter function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877806PMC
http://dx.doi.org/10.1016/j.placenta.2009.11.006DOI Listing

Publication Analysis

Top Keywords

plasma membrane
28
membrane vesicles
16
system beta
12
amino acid
12
vesicles
9
membrane
8
vesicles mouse
8
mouse placenta
8
system system
8
fetal growth
8

Similar Publications

The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Prcis: The discriminant function of glaucoma, obtained by the Laguna ONhE colorimetric program, significantly correlates with the BMO-MRW. Furthermore, the diagnostic capacity was inferior to other structural tests in POAG patients.

Purpose: To evaluate the diagnostic capability for glaucoma and the correlation between peripapillary and macular parameters using spectral domain optical coherence tomography (SD-OCT) and optic nerve head hemoglobin (OHN Hb) levels assessed by the Laguna ONhE® software using colorimetric analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!