Monoamine transporters are a group of transmembrane neurotransmitter sodium symporter (NSS) transporters that play a crucial role in regulating biogenic monoamine concentrations at peripheral and central synapses. Given the key role played by serotonin, dopamine and noradrenaline in addictive and disease states, structure-function studies have been conducted to help guide the development of improved central nervous system therapeutics. Extensive pharmacological, immunological and biochemical studies, in conjunction with three-dimensional homology modeling, have been performed to structurally and functionally characterise the monoamine transporter substrate permeation pathway, substrate selectivity, and binding sites for ions, substrates and inhibitors at the molecular level. However, only recently has it been possible to start to construct an accurate molecular interaction network for the monoamine transporters and their corresponding substrates and inhibitors. Crystal structures of Aquifex aeolicus leucine transporter (LeuT(Aa)), a homologous protein to monoamine transporters that has been experimentally demonstrated to share similar structural folds with monoamine transporters, have been determined in complex with amino acids and inhibitors. The molecular interactions of leucine and tricyclic antidepressants (TCA) has supported many of the predictions based on the mutational studies. Models constructed from LeuT(Aa) are now allowing a rational approach to further clarify the molecular determinants of NSS transporter-ligand complexes, and potentially the ability to better manipulate drug specificity and affinity. In this review, we compare the structure-function relationships of other SLC6 NSS family transporters with monoamine transporters, and discuss possible mechanisms involved in substrate binding and transport, and modes of inhibition by TCAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2009.11.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!