Antioxidative properties of naturally occurring flavon-3-ol, fisetin, were examined by both cyclic voltammetry and quantum-chemical based calculations. The three voltametrically detectable consecutive steps, reflected the fisetin molecular structure, catecholic structural unit in the ring B, C3-OH, and C7-OH groups in the rings C and A. Oxidation potential values, used as quantitative parameter in determining its oxidation capability, indicated good antioxidative properties found with this molecule. Oxidation of the C3'C4' dixydroxy moiety at the B ring occurred first at the lowest positive potentials. The first oxidation step induced fast intramolecular transformations in which the C3 hydroxy group disappeared and the product of this transformation participated in the second oxidation step. The highest potential of oxidation was attributed to the oxidation of C7 hydroxy group. The structural and electronic features of fisetin were investigated at the B3LYP/6-311++G** level of theory. Particularly, the interest was focused on the C3' and C4'-OH sites in the B ring and on C3-OH site in the C ring. The calculated bond dissociation enthalpy values for all OH sites of fisetin clearly indicated the importance of the B ring and C3' and C4'-OH group. The importance of keto-enol tautomerism has also been considered. The analysis also included the Mulliken spin density distribution for the radicals formed after H removal on each OH site. The results showed the higher values of the BDE on the C7-OH and C3-OH sites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp907071vDOI Listing

Publication Analysis

Top Keywords

antioxidative properties
8
ring c3-oh
8
oxidation step
8
hydroxy group
8
c3' c4'-oh
8
oxidation
7
fisetin
5
ring
5
electrochemical density
4
density functional
4

Similar Publications

Background: Functional foods and dairy products are gaining global attention due to their nutritional value and health-promoting characteristics. Lactic acid bacteria (LAB) are one of the promising components included in these products, thanks to their probiotic properties and ability to produce bioactive compounds such as bacteriocins. On the other hand, ectomycorrhizal wild mushrooms (truffles) are known for their ethnomycological importance.

View Article and Find Full Text PDF

A wearable electrochemical sensor utilizing multifunctional hydrogel for antifouling ascorbic acid quantification in sweat.

Anal Chim Acta

February 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:

The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.

View Article and Find Full Text PDF

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Osteoporosis is a chronic disease distinguished by decreased bone density and degradation of bone microstructure, frequently linked with inflammation and oxidative stress, both of which contribute to the acceleration of bone resorption. The compound 5,7-Dihydroxy-4-methylcoumarin (D4M) present in Artemisia dracunculus exhibits significant antioxidant and anti-inflammatory properties. Nonetheless, the potential anti-osteoporotic effects of D4M, along with the molecular targets and mechanisms responsible for these effects, have not been studied.

View Article and Find Full Text PDF

Effects of ORF14 gene on melanin expression, fermentation conditions and properties of melanin production in modified strains.

J Biotechnol

January 2025

Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 China.

Melanin with antioxidant and antibacterial properties can be used in food, cosmetics, biotechnology, and other fields, but its insolubility become a main challenge hindering for its application. In this study, water-soluble melanin produced by the novel species Streptomyces vilmorinianum YP1 was characterized using scanning electron microscopy (SEM), UVvisible spectroscopy (with an absorption peak at 220nm), and Fourier transform infrared (FTIR) spectroscopy. The glycosyltransferase gene ORF14 was knocked out, which improved the production of water-soluble melanin by inhibiting competitive pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!