Evolving partnerships.

Creat Nurs

Custom Health Consultants in St. Paul, Minnesota, USA.

Published: January 2010

Download full-text PDF

Source
http://dx.doi.org/10.1891/1078-4535.15.4.199DOI Listing

Publication Analysis

Top Keywords

evolving partnerships
4
evolving
1

Similar Publications

The photochemical inheritance of Eduardo Lissi and Juan Grotewold and the intersystem crossings with other inheritances.

Photochem Photobiol

January 2025

Departamento de Química, Universidad Nacional de Rio Cuarto, Río Cuarto, Argentina.

In 1963, Eduardo Lissi and Juan Grotewold started a chemical kinetics and photochemistry group at the School of Sciences at the University of Buenos Aires (Facultad de Ciencias Exactas y Naturales, FCEN, UBA). Political circumstances in Argentina and in Chile were a great determinant of the evolution, dispersion, and re-encounters of the group members. The initial graduate students in the group developed their own research groups working in various Countries and on a variety of projects.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Deep-Sea Ecosystems as an Unexpected Source of Antibiotic Resistance Genes.

Mar Drugs

December 2024

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.

The deep-sea ecosystem, a less-contaminated reservoir of antibiotic resistance genes (ARGs), has evolved antibiotic resistance for microbes to survive and utilize scarce resources. Research on the diversity and distribution of these genes in deep-sea environments is limited. Our metagenomics study employed short-read-based (SRB) and assembled-contig-based (ACB) methods to identify ARGs in deep-sea waters and sediments and assess their potential pathogenicity.

View Article and Find Full Text PDF

We appreciate Reierson's thoughtful commentary on our 2019 paper, which described our experiences, ethical process, judgment calls, and lessons from a 2016-2017 data-sharing pilot between Crisis Text Line and academic researchers. The commentary raises important questions about the ethical conduct of health research in the digital age, particularly regarding informed consent, potential conflicts of interest, and the protection of vulnerable populations. Our article focused specifically on the noncommercial use of Crisis Text Line data for research purposes, so we restrict our reply to points relevant to such usage.

View Article and Find Full Text PDF

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!