Genomics and HIM. Three areas of increasing intersection.

J AHIMA

National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA.

Published: December 2009

Download full-text PDF

Source

Publication Analysis

Top Keywords

genomics three
4
three areas
4
areas increasing
4
increasing intersection
4
genomics
1
areas
1
increasing
1
intersection
1

Similar Publications

sp. nov., sp. nov. and subsp. subsp. nov. isolated from pigs.

Int J Syst Evol Microbiol

January 2025

National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA.

Three novel strains within the genus (29887, 29892 and 29896) were isolated from healthy pigs during routine veterinary physical exams. All three strains were non-motile and non-spore-forming Gram-positive cocci. The complete genome of each strain was attained, and phylogenetic analyses were performed.

View Article and Find Full Text PDF

Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops.

View Article and Find Full Text PDF

[New methods at the transition from research to routine diagnostics].

Pathologie (Heidelb)

January 2025

Institut für Pathologie, Fachbereich Thorax- und Molekularpathologie, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Deutschland.

Background: Pathology, traditionally focused on classification and diagnosis, is continuously evolving through new technologies. Advances in proteomics, epigenetics, tissue staining, and 3D imaging expand the possibilities of classical morphology.

Aim Of The Study: The aim of this study was to investigate how modern technologies can improve diagnostic accuracy and therapy selection and how they can be integrated into pathologic routine diagnostics.

View Article and Find Full Text PDF

Next-generation sequencing has revealed the disruptive reality that advanced/metastatic cancers have complex and individually distinct genomic landscapes, necessitating a rethinking of treatment strategies and clinical trial designs. Indeed, the molecular reclassification of cancer suggests that it is the molecular underpinnings of the disease, rather than the tissue of origin, that mostly drives outcomes. Consequently, oncology clinical trials have evolved from standard phase 1, 2, and 3 tissue-specific studies; to tissue-specific, biomarker-driven trials; to tissue-agnostic trials untethered from histology (all drug-centered designs); and, ultimately, to patient-centered, N-of-1 precision medicine studies in which each patient receives a personalized, biomarker-matched therapy/combination of drugs.

View Article and Find Full Text PDF

During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!