Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Generalized diffusion tensor imaging (GDTI) using higher-order tensor (HOT) statistics generalizes the technique of diffusion tensor imaging by including the effect of nongaussian diffusion on the signal of MRI. In GDTI-HOT, the effect of nongaussian diffusion is characterized by higher-order tensor statistics (i.e., the cumulant tensors or the moment tensors), such as the covariance matrix (the second-order cumulant tensor), the skewness tensor (the third-order cumulant tensor), and the kurtosis tensor (the fourth-order cumulant tensor). Previously, Monte Carlo simulations have been applied to verify the validity of this technique in reconstructing complicated fiber structures. However, no in vivo implementation of GDTI-HOT has been reported. The primary goal of this study is to establish GDTI-HOT as a feasible in vivo technique for imaging nongaussian diffusion. We show that probability distribution function of the molecular diffusion process can be measured in vivo with GDTI-HOT and be visualized with three-dimensional glyphs. By comparing GDTI-HOT to fiber structures that are revealed by the highest resolution diffusion-weighted imaging (DWI) possible in vivo, we show that the GDTI-HOT can accurately predict multiple fiber orientations within one white matter voxel. Furthermore, through bootstrap analysis we demonstrate that in vivo measurement of HOT elements is reproducible, with a small statistical variation that is similar to that of diffusion tensor imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824337 | PMC |
http://dx.doi.org/10.1002/mrm.22192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!