History of microsurgery.

Plast Reconstr Surg

Kashihara City, Nara, Japan From the Department of Orthopedic Surgery, Nara Medical University, and the Nara Hand Surgery Institute, Nara Seibu Hospital.

Published: December 2009

In the mid-1500s, the techniques of vascular ligature and vascular suture were developed sporadically by several pioneers in this field. However, vascular surgery became realistic experimentally as a result of the work by Carrel and Guthrie in the early 1900s, in which they performed replantations and transplantations of several composite tissues and organs, including amputated limbs, kidneys, and others using experimental animals. In contrast, the development of heparin by Howell and Holt in 1918 accelerated the rate of these types of operations being performed with increasing success in humans. Since the first use of a monocular microscope for ear surgery by Nylen in 1921 and a binocular microscope by Holmgren in 1923, in addition to the timely developments of the Zeiss operating microscope, microsurgical instruments, and suture materials, microsurgery was born in several surgical disciplines in the ensuing 50-year period. The application of microvascular surgery and microneurosurgery in the fields of hand, plastic, and reconstructive surgery resulted in revolutionary advances in clinical replantation and transplantation of composite tissues and more allotransplantations.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0b013e3181bf825eDOI Listing

Publication Analysis

Top Keywords

composite tissues
8
history microsurgery
4
microsurgery mid-1500s
4
mid-1500s techniques
4
techniques vascular
4
vascular ligature
4
ligature vascular
4
vascular suture
4
suture developed
4
developed sporadically
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Burnout among medical residents and fellows (postgraduate trainees) has been receiving significant attention in the scientific literature with far less focus on the factors that correlate with job satisfaction and well-being. A better understanding of the characteristics that increase job satisfaction (rather than just those that lead to burnout) may allow programs to develop and enhance those positive features, conceivably leading to improved mental health, retention, and recruitment. We hypothesize that job satisfaction among postgraduate trainees is positively impacted by feeling that their work is meaningful, that their work schedules are equitable, and that they are appreciated by their faculty.

View Article and Find Full Text PDF

Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!