Rap1-guanosine triphosphate (GTP)-interacting adaptor molecule (RIAM) plays a critical role in actin reorganization and inside-out activation of integrins in lymphocytes and platelets. We investigated the role of RIAM in T cell receptor (TCR)-mediated signaling. Although phosphorylation of the kinase ZAP-70 and formation of a signalosome recruited to the adaptor protein LAT were unaffected, elimination of endogenous RIAM by short hairpin RNA impaired generation of inositol 1,4,5-trisphosphate, mobilization of intracellular calcium ions (Ca(2+)), and translocation of the transcription factor NFAT to the nucleus. The activation of Ras guanine nucleotide-releasing protein 1 was also impaired, which led to the diminished expression of the gene encoding interleukin-2. These events were associated with the impaired translocation of phosphorylated phospholipase C-gamma1 (PLC-gamma1) to the actin cytoskeleton, which was required to bring PLC-gamma1 close to its substrate phosphatidylinositol 4,5-bisphosphate, and were reversed by reconstitution of cells with RIAM. Thus, by regulating the localization of PLC-gamma1, RIAM plays a central role in TCR signaling and the transcription of target genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908902 | PMC |
http://dx.doi.org/10.1126/scisignal.2000409 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Achieving precise and cost-effective etching in the field of silicon three-dimensional (3D) structure fabrication remains a significant challenge. Here, we present the successful fabrication of microscale anisotropic Si structures with an etching anisotropy of 0.73 using Cu-metal-assisted chemical etching (Cu-MACE) and propose a mechanism to elucidate the chemical behavior of Cu within the MACE solution.
View Article and Find Full Text PDFBiomacromolecules
October 2024
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Nat Commun
July 2023
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea.
Lithium-rich layered oxides, despite their potential as high-energy-density cathode materials, are impeded by electrochemical performance deterioration upon anionic redox. Although this deterioration is believed to primarily result from structural disordering, our understanding of how it is triggered and/or occurs remains incomplete. Herein, we propose a theoretical picture that clarifies the irreversible transformation and redox asymmetry of lithium-rich layered oxides by introducing a series of global and local dynamic structural evolution processes involving slab gliding and transition-metal migration.
View Article and Find Full Text PDFRev Iberoam Micol
March 2022
Dermatology Department, Hospital Regional Universitario de Málaga, Spain.
ACS Sens
March 2021
Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea.
Natural killer (NK) cells are a subset of innate lymphoid cells playing an important role in immune surveillance and early defense against infection and cancer. They recognize and directly kill infected or transformed cells. At the same time, they produce various cytokines and chemokines to regulate other immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!