Hypothalamic insulin signaling is essential to the maintenance of glucose and energy homeostasis. During pathological states, such as obesity and type 2 diabetes mellitus, insulin signaling is impaired. One key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. We used a hypothalamic, neuronal cell model, mHypoE-44, to understand how the highly prevalent nonesterified fatty acid, palmitate, affects neuronal insulin signaling. Through Western blot analysis, we discerned that prolonged exposure to palmitate impairs insulin activation, as assessed by phosphorylation of Akt. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cellular insulin resistance and apoptosis in peripheral tissues. Palmitate treatment induced ER stress through a c-Jun N-terminal kinase (JNK)-dependent pathway because a selective JNK inhibitor blocked palmitate activation of the ER stress pathways eIF2 alpha and X-box binding protein-1. Interestingly, JNK inhibition did not prevent the palmitate-mediated cleaved caspase-3 increase, an apoptotic marker, or insulin signaling attenuation. However, pretreatment with the AMP kinase activator, aminoimidazole carboxamide ribonucleotide, blocked JNK phosphorylation and importantly prevented caspase-3 cleavage and restored insulin signaling during short-term exposure to palmitate. Thus, activation of AMP kinase prevents the deleterious effects of palmitate on hypothalamic neurons by inhibiting the onset of insulin resistance and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2009-1122DOI Listing

Publication Analysis

Top Keywords

insulin signaling
24
resistance apoptosis
12
insulin resistance
12
insulin
10
endoplasmic reticulum
8
reticulum stress
8
hypothalamic neurons
8
peripheral tissues
8
exposure palmitate
8
palmitate activation
8

Similar Publications

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes increases the risk of Alzheimer's disease (AD) dementia. Insulin signaling dysfunction exacerbates tau protein phosphorylation, a hallmark of AD pathology. However, the comprehensive impact of diabetes on patterns of AD-related phosphoprotein in the human brain remains underexplored.

View Article and Find Full Text PDF

Corosolic acid (CA), a natural triterpenoid, exhibits various biological activities and is often called as plant-derived insulin due to its significant hypoglycemic effects, making it especially beneficial for individuals with diabetes or high blood glucose levels. However, CA has notable in vitro toxicity, low water solubility, and poor pharmacokinetic properties. To address these limitations, a series of CA derivatives were synthesized, resulting in the identification of derivative H26, which demonstrates a significantly enhanced hypoglycemic effect, reduced toxicity, and improved pharmacokinetic characteristics compared to CA.

View Article and Find Full Text PDF

Metabolic syndrome during menopause can lead to diabetes, cardiovascular problems, and increased mortality rates. Hormone replacement therapy is recommended to manage climacteric complications, but it has serious adverse effects. This study, therefore, investigated the potential of supplementing some minerals, vitamins, and natural products like boric acid, magnesium, vitamin D3, and extra virgin olive oil on metabolic status of menopausal ovariectomized rats.

View Article and Find Full Text PDF

Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated and exploration using isolated pancreatic islets of C57BL/6J mice.

J Recept Signal Transduct Res

December 2024

Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!