Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate L-Arg first to N(omega)-hydroxyl-L-arginine and then to L-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the dispute in the various proposed mechanisms resides in the uncertainty concerning the number and sources of proton transfers. Although specific protonation events are key features in determining the specificity and efficiency of the two catalytic steps, little is known about the role and properties of protons from the substrate, cofactors, and H-bond network in the vicinity of the heme active site. In this study, we have investigated the role of the acidic proton from the L-Arg guanidinium moiety on the stability and reactivity of the ferrous heme-oxy complex intermediate by exploiting a series of L-Arg analogues exhibiting a wide range of guanidinium pK(a) values. Using electrochemical and vibrational spectroscopic techniques, we have analyzed the effects of the analogues on the heme, including characteristics of its proximal ligand, heme conformation, redox potential, and electrostatic properties of its distal environment. Our results indicate that the substrate guanidinium pK(a) value significantly affects the H-bond network near the heme distal pocket. Our results lead us to propose a new structural model where the properties of the guanidinium moiety finely control the proton transfer events in NOS and tune its oxidative chemistry. This model may account for the discrepancies found in previously proposed mechanisms of NOS oxidation processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844172 | PMC |
http://dx.doi.org/10.1074/jbc.M109.038240 | DOI Listing |
J Am Chem Soc
January 2025
Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
We present a bifunctional catalyst consisting of a copper(I)/N-heterocyclic carbene and an organocatalytic guanidine moiety that enables, for the first time, a copper(I)-catalyzed reduction of amides with H as the terminal reducing agent. The guanidine allows for reactivity tuning of the originally weakly nucleophilic copper(I) hydrides - formed in situ - to be able to react with difficult-to-reduce amides. Additionally, the guanidine moiety is key for the selective recognition of "privileged" amides based on simple and readily available heterocycles in the presence of other amides within one molecule, giving rise to hitherto unknown site-selective catalytic amide hydrogenation.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
The goal of this work was to synthesize new compounds for anticancer evaluation as a trial to obtain new antitumor agents with higher activity and fewer side effects. Therefore, the precursor 2,2'-(1,4-phenylenebis (thiazole-4,2-diyl))bis (3-(dimethylamino)acrylonitrile) was used to synthesize various azolopyrimidine derivatives connected to the thiazole moiety. Compounds -, including pyrazolopyrimidine, triazolopyrimidine, and others, were produced by reacting enaminonitrile with different -nucleophiles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Université de Bordeaux, CBMN UMR5248, IECB, 2, rue Robert Escarpit, 33607, PESSAC, FRANCE.
Peptide stapling has emerged as a versatile approach in drug discovery to reinforce secondary structure elements especially α-helices and improve properties of linear bioactive peptides. Inspired by the prevalence of arginine in protein-protein and protein-DNA interfaces, we investigated guanidinium-stapling as a means to constrain helical peptides. Guanidinium stapling was readily achieved on solid support, utilizing two orthogonally protected lysine or unatural α-amino acid residues with an amino function.
View Article and Find Full Text PDFDalton Trans
November 2024
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
Copper complexes of tripodal ligands have been used as model systems for electron transfer proteins for decades, displaying a broad range of electron self-exchange rates. We herein report a group of six tripodal tetradentate triarylamine ligands which display a varying number of guanidine and 2-methylquinolinyl moieties. Their corresponding Cu(I) complexes have been (re)synthesized and studied with regard to their electron transfer properties.
View Article and Find Full Text PDFNovel H-bond-rich iridium(iii) complexes with different systems of cyclometalating ligands bearing the general formula [Ir(C^N)(N^N)] were synthesised, characterised and their photophysical properties determined. The incorporated guanidine moieties allow us to introduce a hydrogen-bonding array for the formation of self-assembled iridium-bound hydrogen-bonded systems. Through a series of experimental and computational studies we demonstrated the host-guest chemistry of these systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!