The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is known to possess the properties of an ion-channel protein, and in the present study we show that the PRRSV E protein is N-terminal myristoylated. The PRRSV E protein contains the consensus motif of (1)MGxxxS(6) for myristoylation, and in the presence of 2-hydroxymyristic acid, the virus titer decreased by 2.5 log TCID(50) and the level of viral RNA was reduced significantly. When the glycine at position 2 was mutated to alanine (G2A) using an infectious cDNA clone, a viable virus was recoverable and a mutant PRRSV was obtained. The titers of G2A mutant virus were 2.0 x 10(4) and 1.0 x 10(6)TCID(50)/ml for 'passage-2' and 'passage-3' viruses, respectively, in PAM cells, and these titers were significantly lower than those of wild-type PRRSV. When treated with the myristoylation inhibitor, the G2A mutant virus was resistant to the drug. The data show that the PRRSV E protein myristoylation is non-essential for PRRSV infectivity but promotes the growth of the virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114369 | PMC |
http://dx.doi.org/10.1016/j.virusres.2009.11.016 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, PR China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, PR China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) demonstrates a significantly high prevalence among swine populations. Monoclonal antibodies (mAbs) with high affinity for conserved epitopes of PRRSV can facilitate the development of a broad-spectrum detection method for this virus. This study identified two PRRSV-specific mAbs, designated 2B1 and 2C6, which recognized two conformation-dependent epitopes through indirect immunofluorescence assay (IFA) and Western blot analysis.
View Article and Find Full Text PDFVet Microbiol
January 2025
Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea.
Understanding the molecular interactions between porcine reproductive and respiratory syndrome viruses (PRRSVs) and host cells is crucial for developing effective strategies against PRRSV. CD163, predominantly expressed in porcine macrophages and monocytes, is a key receptor for PRRSV infection. CD169, also known as Sialoadhesin, has emerged as a potential receptor facilitating PRRSV internalization.
View Article and Find Full Text PDFPathogens
November 2024
Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.
Porcine reproductive and respiratory syndrome (PRRS), which is caused by the porcine reproductive and respiratory syndrome virus (PRRSV), has a significant impact on the global pork industry. It results in reproductive failure in sows and respiratory issues in pigs of all ages. Despite the availability of vaccines, controlling the PRRSV remains challenging, partly owing to the limitations of cell culture systems.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
School of Basic Medical Sciences, Binzhou Medical University, Yantai, China.
Viral infections in swine, such as African swine fever (ASF), porcine reproductive and respiratory syndrome (PRRS), and foot-and-mouth disease (FMD), have a significant impact on the swine industry. Despite the significant progress in the recent efforts to develop effective vaccines against viral diseases in swine, the search for new protective vaccination strategy remains a challenge. The antigenic epitope, acting as a fundamental unit, can initiate either a cellular or humoral immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!