Despite the remarkable regenerative capacity of mammalian skin, an adult dermal stem cell has not yet been identified. Here, we investigated whether skin-derived precursors (SKPs) might fulfill such a role. We show that SKPs derive from Sox2(+) hair follicle dermal cells and that these two cell populations are similar with regard to their transcriptome and functional properties. Both clonal SKPs and endogenous Sox2(+) cells induce hair morphogenesis, differentiate into dermal cell types, and home to a hair follicle niche upon transplantation. Moreover, hair follicle-derived SKPs self-renew, maintain their multipotency, and serially reconstitute hair follicles. Finally, grafting experiments show that follicle-associated dermal cells move out of their niche to contribute cells for dermal maintenance and wound-healing. Thus, SKPs derive from Sox2(+) follicle-associated dermal precursors and display functional properties predicted of a dermal stem cell, contributing to dermal maintenance, wound-healing, and hair follicle morphogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828150PMC
http://dx.doi.org/10.1016/j.stem.2009.10.019DOI Listing

Publication Analysis

Top Keywords

hair follicle
16
skps derive
12
dermal stem
12
dermal
9
adult dermal
8
stem cell
8
derive sox2+
8
dermal cells
8
functional properties
8
follicle-associated dermal
8

Similar Publications

Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

High-frequency ultrasound (HFUS) has been reported to be useful for the diagnosis of cutaneous diseases; however, its two-dimensional nature limits the value both in quantitative and qualitative evaluation. Three-dimensional (3D) visualization might help overcome the weakness of the currently existing HFUS. 3D-HFUS was newly developed and applied to various skin tumors and inflammatory hair diseases to assess its validity and advantages for dermatological use.

View Article and Find Full Text PDF

Moracin M promotes hair regeneration through activation of the WNT/β-catenin pathway and angiogenesis.

Arch Dermatol Res

January 2025

Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.

Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!