Background: Although the clinical manifestations of alcoholic liver disease are well described, little is known about the molecular basis for liver injury. Recent studies have indicated that chronic alcohol consumption leads to the lysine-hyperacetylation of several hepatic proteins, and this list is growing quickly.

Methods: To identify other hyperacetylated proteins in ethanol-fed livers, we chose a proteomics approach. Cytosolic and membrane proteins (excluding nuclei) were separated on 2D gels, transferred to PVDF and immunoblotted with antibodies specific for acetylated lysine residues. Hyperacetylated proteins were selected for trypsin digestion and mass spectrometric analysis.

Results: In all, 40 proteins were identified, 11 of which are known acetylated proteins. Remarkably, the vast majority of hyperacetylated membrane proteins were mitochondrial residents. Hyperacetylated cytosolic proteins ranged in function from metabolism to cytoskeletal support. Notably, 3 key anti-oxidant proteins were identified whose activities are impaired in ethanol-treated cells. We confirmed that the anti-oxidant enzyme, glutathione peroxidase 1, actin and cortactin are hyperacetylated in ethanol-treated livers.

Conclusions: Alcohol-induced hyperacetylation of multiple proteins may contribute to the development of liver injury. The abundance of acetylated mitochondrial proteins further suggests that this modification is important in regulating liver metabolism and when perturbed, may contribute to the progression of a variety of metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957803PMC
http://dx.doi.org/10.1111/j.1530-0277.2009.01091.xDOI Listing

Publication Analysis

Top Keywords

proteins
11
liver injury
8
hyperacetylated proteins
8
membrane proteins
8
proteins identified
8
hyperacetylated
5
chronic ethanol
4
ethanol consumption
4
consumption induces
4
induces global
4

Similar Publications

Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as model and demonstrated that unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes.

View Article and Find Full Text PDF

Recent Advance in Sensitive Detection of Demethylase FTO.

Chembiochem

December 2024

China Three Gorges University, College of Biological and Pharmaceutical Sciences, No. 8, Daxue Road, 443002, Yichang, CHINA.

Methylation modification is a critical regulatory mechanism in epigenetics, playing a significant role in various biological processes. N6-methyladenosine (m6A) is the most prevalent modification found in RNA. This modification is dynamic and reversible, regulated by methyltransferases and demethylases.

View Article and Find Full Text PDF

PDA/PMMA blend membrane utilized for the selective adsorption and separation of heavy metal ions.

Chemistry

December 2024

Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA.

The detrimental effects of heavy metal aqueous pollution are attracting people's attention increasingly. Membrane separation technology plays a pivotal role in the treatment of aqueous pollution due to its low energy consumption and excellent separation effect. Inspired by the strong adhesion of heavy metal ions by the dopamine in mussel protein, we have fabricated the 5%, 10%, 20% and 30% proportion of polydopamine (PDA)/Polymethyl methacrylate (PMMA) blend membranes with dopamine structure by solvent-induced phase conversion.

View Article and Find Full Text PDF

The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by ' asiaticus' (Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named . we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins.

View Article and Find Full Text PDF

Cryptococcus neoformans, the most opportunistic fungal pathogen, causes cryptococcal meningitis. Based on molecular docking and ADME/toxicity analysis, the top two lead compounds selected from a screening of 5,807 phytochemical compounds from 29 medicinal plants were CID_8299 and CID_71346280, with docking scores of -5.786 and -6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!