Matrix metalloproteinases (MMPs) belong to a family of closely related calcium- and zinc-dependent endopeptidases involved in the degradation and remodeling of extracellular matrix (ECM) proteins that are associated with the tumorigenic processes. MMPs promote tumor invasion and metastasis, regulating host defense mechanisms and normal cell function. Thus, MMP inhibitors (MMPIs) are expected to be useful chemotherapeutic agents for the treatment of malignant cancer, osteoarthritis, and rheumatoid arthritis. A vast number of small molecular MMPIs have been developed in recent years. Although there have been considerable preclinical and clinical studies on these inhibitors, most of the effective candidates in clinical trials, however, have yielded unsatisfactory results, thus they are as yet unavailable for use as therapeutic drugs. Currently, more efforts have been directed to the design of specific inhibitors towards certain MMP family members for selective usage. This review will focus primarily on an analysis of recent developed MMPIs that have entered preclinical or clinical trials, and recently registered patents with regard to new highly selective MMPIs in USA or patent applications related to the specific inhibitors of MMPs. We also analyze the clinical failure and discuss the possible strategies to best optimize the development of these novel agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/157489210790936234 | DOI Listing |
J Cosmet Dermatol
January 2025
Centre Médical Laser Palaiseau, Palaiseau, France.
Introduction: Single-nucleotide polymorphisms (SNPs) represent a significant genetic variation influencing individual responses to cosmetic dermatology treatments. SNP profiling offers a pathway to personalized skincare by enabling practitioners to predict patient outcomes, customize interventions, and mitigate risks.
Background: The integration of genetic insights into dermatology has gained traction, with SNP analysis revealing predispositions in skin characteristics, such as collagen degradation, pigmentation, and inflammatory responses.
Cytojournal
November 2024
Department of Gynecology , Qingdao Women and Children's Hospital, Shandong University, Qingdao, China.
Objective: Deep endometriosis is now referred to as adenomyosis externa, whereas adenomyosis is once known as endometriosis interna. Lysine-specific histone demethylase 1A (KDM1A, commonly LSD1) is a lysine demethylase that targets histone and non-histone proteins. This study aimed to assess how KDM1A affects the migration, invasion, and proliferation of adenomyosis-derived endometrial stromal cells (ESCs).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).
View Article and Find Full Text PDFCureus
November 2024
Vascular Surgery, University of Colorado Anschutz Medical Center, Colorado, USA.
Fluoroquinolones (FQs) are a widely prescribed class of antibiotics including ciprofloxacin, levofloxacin, and ofloxacin. They are commonly used to treat a variety of infections worldwide. Known for their broad-spectrum antimicrobial activity, as well as excellent pharmacokinetics and bioavailability, the use of FQs has risen significantly.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou City, Henan Province, 450000, China. Electronic address:
Cerebrovascular diseases are major global health issues, responsible for significant morbidity and mortality. Basigin (additionally called CD147 or EMMPRIN) is a glycosylated transmembrane protein that facilitates intercellular communication. Recent research has highlighted the critical role of Basigin in inducing matrix metalloproteinases (MMPs), which contribute to the progression of cerebrovascular diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!