OBJECTIVE-To determine whether metal concentrations in canine liver specimens were influenced by specimen size, assay variability, tissue processing (formalin fixation and deparaffinization), or storage in paraffin blocks. SAMPLE POPULATION-Liver specimens (fresh frozen and deparaffinized) from 2 dogs with chronic hepatitis (high copper but unremarkable iron concentration [liver 1] and unremarkable copper but high iron concentration [liver 2]) as well as fresh and deparaffinized-archived liver specimens from 20 dogs with various hepatopathies. PROCEDURES-Fresh frozen liver specimens (obtained via simulated needle-core and wedge biopsy), fresh hepatic tissue, and deparaffinized-archived specimens (0.5 to 14 years old) were analyzed for concentrations of copper, iron, and zinc by atomic absorption flame spectrometry. Clinical severity scores were assigned on the basis of tissue metal concentrations. RESULTS-Interassay variation of metal standards was < 4%. Measurements of liver tissues on 8 consecutive days yielded high coefficients of variation (3.6% to 50%) reflecting heterogenous histologic metal distribution; variation was highest in liver 1 and deparaffinized-archived tissues. Heterogenous metal distribution was confirmed by histologic evaluation. The largest range of metal concentrations was detected in wedge biopsy specimens. In tissues with high metal concentrations, copper and iron concentrations were significantly lower in needle-core versus wedge biopsy specimens. A higher zinc concentration in deparaffinized-archived specimens masked a low zinc concentration in fresh liver tissue of 10 of 20 (50%) dogs. CONCLUSIONS AND CLINICAL RELEVANCE-Retrospective measurement of copper and iron concentrations but not zinc concentrations in deparaffinized-archived liver specimens provided relevant information. The value of needle-core biopsy specimens for measurement of metal concentrations is questionable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.70.12.1502 | DOI Listing |
Anal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFAnal Methods
November 2017
Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China.
1,4-Dihydroxyanthraquinone (1,4-DHAQ, a fluorophore) doped carbon nanotubes@cellulose (1,4-DHAQ-doped CNTs@CL) nanofibrous membranes have been prepared electrospinning and subsequent deacetylation in this work. They have been successfully applied for highly sensitive detection of Cu in aqueous solution. The surface area per unit mass (S/M) ratio of the nanofibrous membranes was enhanced by incorporating the CNTs into cellulose.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India.
Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
There are several studies that announce the inhibitory behavior of this sort of substance to strengthen the shield of metals, which is one of the positive benefits of green inhibitors. In the current investigation, Araucaria heterophylla studied as a green corrosion inhibitor to avert the mild steel during the acidic cleaning. The examination of this plant's ability to control corrosion at different concentrations in the acidic solution used certain expert measures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!