The present study obtained data of rice canopy spectrum, and P and chlorophyll content at typical growth stages with different rates of P supply by means of solution experiment. The effects of P treatments on leaf P and chlorophyll content were analyzed statistically using LSD's multiple comparison at a probability of 0.05; By mutual information (MI) variable selection procedure, the optimal spectral variables were identified at 536, 630, 1040, 551 and 656 nm, and their corresponding mutual information values were 1.0575, 1.1039, 1.135 3, 1.1417 and 1.1494 respectively; based on these sensitive bands, the built feed-forward artificial neural network model (ANN) had higher precision for P content estimation than the multiple linear regression model (MLR). Its RMSE of cross-validation and R were 0.038 8 and 0.9882, respectively, for the calibration data set, and the RMSE of prediction and R were 0.0505 and 0.9892, respectively, for the test data set. Therefore, it was suggested that MI was encouraged for quantitative prediction of leaf P content in rice with visible/near infrared hyperspectral information without assumption on the relationship between independent and dependent variables. But more work is needed to explain why these bands are sensitive to leaf P content in rice.
Download full-text PDF |
Source |
---|
Anal Chem
January 2025
College of Chemistry and Material Science, Northwest University, Xi'an 710127, China.
With rapid, energy-intensive, and coal-fueled economic growth, global air quality is deteriorating, and particulate matter pollution has emerged as one of the major public health problems worldwide. It is extremely urgent to achieve carbon emission reduction and air pollution prevention and control, aiming at the common problem of weak and unstable signals of characteristic elements in the application of laser-induced breakdown spectroscopy (LIBS) technology for trace element detection. In this study, the influence of the optical fiber collimation signal enhancement method on the LIBS signal was explored.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Operation and Economics of Transport and Communications, Department of Economics, University of Zilina, Zilina, Slovakia.
The online environment has its own specifics, which shape the specific behavior of all market subjects, both customers and companies that trade electronically. The aim of the paper is to create, quantify and verify a conceptual comprehensive model of relationships between determinants that influence consumers when shopping online. The impetus for the conducted research was the discovery of the non-existence of a comprehensive model of online shopping behavior that reflects the specifics of the online environment.
View Article and Find Full Text PDFTalanta
January 2025
Daqing Oilfield Shale Oil Exploration and Development Headquarters, Daqing, 163455, China.
Near-infrared (NIR) spectroscopy analysis technology has become a widely utilized analytical tool in various fields due to its convenience and efficiency. However, with the promotion of instrument precision, the spectral dimension can now be expanded to include hundreds of dimensions. This expansion results in time-consuming modeling processes and a decrease in model performance.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
IBM, New York, NY, USA.
Principal Component Analysis (PCA) is a powerful multivariate tool allowing the projection of data in low-dimensional representations. Nevertheless, datapoint distances on these low-dimensional projections are challenging to interpret. Here, we propose a computationally simple heuristic to transform a map based on standard PCA (when the variables are asymptotically Gaussian) into an entropy-based map where distances are based on mutual information (MI).
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Transport Planning Research, China Railway Design Corporation, Tianjin, China.
Generally, to address the resource management issues in high-speed railway operations, particularly in the context of large-scale networked high-speed train transportation organizations, a phased optimization approach is introduced. This approach divides the problem into two stages: the high-speed train timetabling and the planning of Electric Multiple Unit (EMU) route. The lack of direct integration between these stages has hindered the flexible and efficient utilization of line capacity and EMU resources based on large-scale network, limiting the potential for mutual compensation and coordination among different types of resources across different regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!