The preplate of the cerebral cortex contains projection neurons that connect the cortical primordium with the subpallium. These are collectively named pioneer neurons. After preplate partition, most of these pioneer neurons become subplate neurons. Certain preplate neurons, however, never associate with the subplate but rather with the marginal zone. In the present overview, we propose a novel classification of non-subplate pioneer neurons in rodents into two subtypes. In rats, the neurons of the first subtype are calbindin(+) (CB), calretinin(+) (CR) and L1(+) and are situated in the upper part of the preplate before its partition. Neurons of the second subtype are TAG-1(+) and are located slightly deeper to the previous population in the preplate. After the preplate partition, the CB(+), CR(+) and L1(+) neurons remain in the marginal zone whereas TAG-1(+) neurons become transiently localized in the upper cortical plate. In mice, by contrast, calcium binding proteins did not label pioneer neurons. We define in mice two subtypes of non-subplate pioneer neurons, either L1(+) or TAG-1(+)/cntn2(+). We propose these to be the homologues of the two subtypes of non-subplate pioneer neurons of rats. The anatomical distribution of these neuron populations is similar in rats and mice. The two populations of non-subplate pioneer neurons differ in their axonal projections. Axons of L1(+) pioneer neurons project to the ganglionic eminences and the anterior preoptic area, but avoid entering the posterior limb of the internal capsule towards the thalamus. Axons of TAG-1(+) pioneer neurons project to the lateral parts of the ganglionic eminences at the early stages of cortical histogenesis examined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784044 | PMC |
http://dx.doi.org/10.3389/neuro.05.027.2009 | DOI Listing |
Front Neurosci
January 2025
Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
Introduction: In the rapidly advancing field of 'omics research, there is an increasing demand for sophisticated bioinformatic tools to enable efficient and consistent data analysis. As biological datasets, particularly metabolomics, become larger and more complex, innovative strategies are essential for deciphering the intricate molecular and cellular networks.
Methods: We introduce a pioneering analytical approach that combines Principal Component Analysis (PCA) with Graphical Lasso (GLASSO).
Front Neurosci
January 2025
Michael Sars Centre, University of Bergen, Bergen, Norway.
Comparative studies on the development of nervous systems have a significant impact on understanding animal nervous system evolution. Nevertheless, an important question is to what degree neuronal structures, which play an important role in early stages, become part of the adult nervous system or are relevant for its formation. This is likely in many direct developers, but it is not the case in forms with catastrophic metamorphosis.
View Article and Find Full Text PDFCell Discov
January 2025
Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, China; School of Public Health, Southeast University, Nanjing 210009, China; Yancheng Kindergarten Teachers College, Yancheng 224005, China.
Given the fact that carbon quantum dots (CQDs) have been commercially produced in quantities, it is inevitable to make their ways into environment and interact closely with the public. Even though CQDs in the environment have been reported to damage the central nervous system, the underlying mechanisms of neurotoxic effects of CQDs following respiratory exposure is still not clear. Intranasal instilled CQDs, mimicking respiratory exposure, induces neurobehavioral impairments associated with neuronal cell death of ferroptosis and disulfidptosis that is regulated by metabolic reprogramming of glutathione and cysteine pathways in the cortex and hippocampus where CQDs were hardly accumulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!