The cerebellum has been implicated as a major player in producing temporal acuity. Theories of cerebellar timing typically emphasize the role of the cerebellar cortex while overlooking the role of the deep cerebellar nuclei (DCN) that provide the sole output of the cerebellum. Here we review anatomical and electrophysiological studies to shed light on the DCN's ability to support temporal pattern generation in the cerebellum. Specifically, we examine data on the structure of the DCN, the biophysical properties of DCN neurons and properties of the afferent systems to evaluate their contribution to DCN firing patterns. In addition, we manipulate one of the afferent structures, the inferior olive (IO), using systemic harmaline injection to test for a network effect on activity of single DCN neurons in freely moving animals. Harmaline induces a rhythmic firing pattern of short bursts on a quiescent background at about 8 Hz. Other neurons become quiescent for long periods (seconds to minutes). The observed patterns indicate that the major effect harmaline exerts on the DCN is carried indirectly by the inhibitory Purkinje cells (PCs) activated by the IO, rather than by direct olivary excitation. Moreover, we suggest that the DCN response profile is determined primarily by the number of concurrently active PCs, their firing rate and the level of synchrony occurring in their transitions between continuous firing and quiescence. We argue that DCN neurons faithfully transfer temporal patterns resulting from strong correlations in PCs state transitions, while largely ignoring the timing of simple spikes from individual PCs. Future research should aim at quantifying the contribution of PC state transitions to DCN activity, and the interplay between the different afferent systems that drive DCN activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783015 | PMC |
http://dx.doi.org/10.3389/neuro.03.014.2009 | DOI Listing |
Neuroscience
January 2025
Laboratory of Neurophysiology and Synapse, Department of Physiology, School of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil. Electronic address:
Cartwheel (CW) neurons are glycinergic interneurons in the dorsal cochlear nucleus (DCN) that exhibit spontaneous firing, resulting in potent tonic inhibition of fusiform neurons. CW neurons expressing open ATP-sensitive potassium (K) channels do not fire spontaneously, and activation of K channels halts spontaneous firing in these neurons. However, the conditions that regulate K channel opening in CW neurons remain unknown.
View Article and Find Full Text PDFAnn Med
December 2024
The Six Medical Center, PLA General Hospital, Beijing, PR China.
J Headache Pain
August 2024
Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Background: Widespread neuropathic pain usually affects a wide range of body areas and inflicts huge suffering on patients. However, little is known about how it happens and effective therapeutic interventions are lacking.
Methods: Widespread neuropathic pain was induced by partial infraorbital nerve transection (p-IONX) and evaluated by measuring nociceptive thresholds.
Sci Rep
May 2024
Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France.
Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K + -Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride.
View Article and Find Full Text PDFbioRxiv
April 2024
W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA.
Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!