The aim of this study was to explore similarities between intensity-modulated radiotherapy (IMRT) and intensity-modulated arc therapy (IMAT) techniques in the context of the number of multi-leaf collimator (MLC) segments required to achieve plan objectives, the major factor influencing plan quality. Three clinical cases with increasing complexity were studied: (a) prostate only, (b) prostate and seminal vesicles and (c) prostate and pelvic lymph nodes. Initial 'gold-standard' plans with the maximum possible organ-at-risk sparing were generated for all three cases. For each case, multiple IMRT and IMAT plans were generated with varying intensity levels (IMRT) and arc control points (IMAT), which translate into varying MLC segments in both modalities. The IMAT/IMRT plans were forced to mimic the organ-at-risk sparing and target coverage in the gold-standard plans, thereby only allowing the target dose inhomogeneity to be variable. A higher target dose inhomogeneity (quantified as D5--dose to the highest 5% of target volume) implies that the plan is less capable of modulation. For each case, given a similar number of MLC segments, both IMRT and IMAT plans exhibit similar target dose inhomogeneity, indicating that there is no difference in their ability to provide dose painting. Target dose inhomogeneity remained approximately constant with decreasing segments, but sharply increased below a specific critical number of segments (70, 100, 110 for cases a, b, c, respectively). For the cases studied, IMAT and IMRT plans are similar in their dependence on the number of MLC segments. A minimum critical number of segments are required to ensure adequate plan quality. Future studies are needed to establish the range of minimum critical number of segments for different treatment sites and target-organ geometries.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/55/1/003DOI Listing

Publication Analysis

Top Keywords

mlc segments
16
target dose
16
dose inhomogeneity
16
critical number
12
number segments
12
segments
8
segments required
8
plan quality
8
organ-at-risk sparing
8
imrt imat
8

Similar Publications

Quality assurance practices performed before treatment are believed to identify various potential errors. In this study, 2-dimensional (2D) dosimetric results were analyzed by making some intentional mistakes in six different treatment plans. In this way, the detectability of errors was investigated.

View Article and Find Full Text PDF

Validation of a rapid algorithm for repeated intensity modulated radiation therapy dose calculations.

Biomed Phys Eng Express

December 2024

Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, United States of America.

As adaptive radiotherapy workflows and deep learning model training rise in popularity, the need for repeated applications of a rapid dose calculation algorithm increases. In this work we evaluate the feasibility of a simple algorithm that can calculate dose directly from MLC positions in near real-time. Given the necessary machine parameters, the intensity modulated radiation therapy (IMRT) doses are calculated and can be used in optimization, deep learning model training, or other cases where fast repeated segment dose calculations are needed.

View Article and Find Full Text PDF

Development and validation of the Normalized Organoid Growth Rate (NOGR) metric in brightfield imaging-based assays.

Commun Biol

December 2024

Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.

This study focuses on refining growth-rate-based drug response metrics for patient-derived tumor organoid screening using brightfield live-cell imaging. Traditional metrics like Normalized Growth Rate Inhibition (GR) and Normalized Drug Response (NDR) have been used to assess organoid responses to anticancer treatments but face limitations in accurately quantifying cytostatic and cytotoxic effects across varying growth rates. Here, we introduce the Normalized Organoid Growth Rate (NOGR) metric, specifically developed for brightfield imaging-based assays.

View Article and Find Full Text PDF

To develop and assess an automated Sub-arc Collimator Angle Optimization (SACAO) algorithm and Cumulative Blocking Index Ratio (CBIR) metrics for single-isocenter coplanar volumetric modulated arc therapy (VMAT) to treat multiple brain metastases. This study included 31 patients with multiple brain metastases, each having 2 to 8 targets. Initially, for each control point, the MLC blocking index was calculated at different collimator angles, resulting in a two-dimensional heatmap.

View Article and Find Full Text PDF

Background: High-fidelity cardiac magnetic resonance (MR) imaging plays a pivotal role in the surveillance of congenital heart disease (CHD) and aortopathy.

Objective: We aimed to evaluate the quality and accuracy of free breathing, ECG-gated noncontrast three-dimensional (3D) balanced steady-state free precession (bSSFP) in cases of CHDs and aortopathies using contrast-enhanced 3D bSSFP as a reference. We also used one of our routinely used non-ECG-gated 2D-single-shot (SSh) bSSFP sequence as an adjunct to noncontrast 3D bSSFP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!