A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. | LitMetric

We tested the hypotheses that (1) nitric oxide (NO) contributes to augmented skeletal muscle vasodilatation during hypoxic exercise and (2) the combined inhibition of NO production and adenosine receptor activation would attenuate the augmented vasodilatation during hypoxic exercise more than NO inhibition alone. In separate protocols subjects performed forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O(2) saturation). In protocol 1 (n = 12), subjects received intra-arterial administration of saline (control) and the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA). In protocol 2 (n = 10), subjects received intra-arterial saline (control) and combined L-NMMA-aminophylline (adenosine receptor antagonist) administration. Forearm vascular conductance (FVC; ml min(-1) (100 mmHg)(-1)) was calculated from forearm blood flow (ml min(-1)) and blood pressure (mmHg). In protocol 1, the change in FVC (Delta from normoxic baseline) due to hypoxia under resting conditions and during hypoxic exercise was substantially lower with L-NMMA administration compared to saline (control; P < 0.01). In protocol 2, administration of combined L-NMMA-aminophylline reduced the DeltaFVC due to hypoxic exercise compared to saline (control; P < 0.01). However, the relative reduction in DeltaFVC compared to the respective control (saline) conditions was similar between L-NMMA only (protocol 1) and combined L-NMMA-aminophylline (protocol 2) at 10% (-17.5 +/- 3.7 vs. -21.4 +/- 5.2%; P = 0.28) and 20% (-13.4 +/- 3.5 vs. -18.8 +/- 4.5%; P = 0.18) hypoxic exercise. These findings suggest that NO contributes to the augmented vasodilatation observed during hypoxic exercise independent of adenosine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821731PMC
http://dx.doi.org/10.1113/jphysiol.2009.180489DOI Listing

Publication Analysis

Top Keywords

hypoxic exercise
28
saline control
16
contributes augmented
12
augmented vasodilatation
12
vasodilatation hypoxic
12
combined l-nmma-aminophylline
12
nitric oxide
8
oxide contributes
8
exercise
8
adenosine receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!