The novel neurotensin analog NT69L blocks phencyclidine (PCP)-induced increases in locomotor activity and PCP-induced increases in monoamine and amino acids levels in the medial prefrontal cortex.

Brain Res

Neuropsychopharmacology Laboratory and Mayo Foundation for Medical Education and Research, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.

Published: January 2010

Schizophrenia is a life-long, severe, and disabling brain disorder that requires chronic pharmacotherapy. Because current antipsychotic drugs do not provide optimal therapy, we have been developing novel treatments that focus on receptors for the neuropeptide neurotensin (NT). NT69L, an analog of neurotensin(8-13), acts like an atypical antipsychotic drug in several dopamine-based animal models used to study schizophrenia. Another current animal model utilizes non-competitive antagonists of the NMDA/glutamate receptor, such as the psychotomimetic phencyclidine (PCP). In the present study, we investigated the effects of NT69L on PCP-induced behavioral and biochemical changes in the rat. The top of an activity chamber was modified to allow us to perform microdialysis in rat brain, while simultaneously recording the locomotor activity of a rat. PCP injection significantly increased activity as well as the extracellular concentration of norepinephrine (NE), 5-HT, dopamine (DA), and glutamate in the medial prefrontal cortex (mPFC). Pretreating with NT69L blocked the PCP-induced hyperactivity as well as the increase of DA, 5-HT, NE, and glutamate in mPFC. Interestingly and unexpectedly, NT69L markedly increased glycine levels, while PCP was without effect on glycine levels. Thus, NT69L showed antipsychotic-like effects in this glutamate-based animal model for studying schizophrenia. Previous work from our group suggests that NT69L also has antipsychotic-like effects in dopaminergic and serotonergic rodent models. Taken together, these data suggest that NT69L in particular and NT receptor agonists in general, will be useful as broad-spectrum antipsychotic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812638PMC
http://dx.doi.org/10.1016/j.brainres.2009.11.048DOI Listing

Publication Analysis

Top Keywords

nt69l
8
pcp-induced increases
8
locomotor activity
8
medial prefrontal
8
prefrontal cortex
8
antipsychotic drugs
8
animal model
8
glycine levels
8
nt69l antipsychotic-like
8
antipsychotic-like effects
8

Similar Publications

A neurotensin analog blocks cocaine-conditioned place preference and reinstatement.

Behav Pharmacol

April 2016

aNeuropsychopharmacology Laboratory bDepartment of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA.

Neurotensin (NT) is a neuropeptide that acts as a neurotransmitter and neuromodulator in the central nervous system. Several studies suggest a therapeutic role for NT analogs in nicotine and other psychostimulant addictions. We studied the effects of the nonselective NT receptor agonist NT69L, which has equal affinity for the two major NT receptors, NTS1 and NTS2, on the expression of cocaine-conditioned place preference (cocaine-CPP) and reinstatement after extinction.

View Article and Find Full Text PDF

Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e.

View Article and Find Full Text PDF

Neurotensin (NT) analogs, NT69L, NT72, and NT79, differentially bind the two major neurotensin receptors, NTS1 and NTS2, to elicit effects similar to those of endogenous NT, including analgesia. Previous data strongly suggest NTS2 as the main receptor involved in NT- and NT analog-mediated visceral analgesia. However, this idea has yet to be confirmed with the use of mice lacking the NTS2 receptor.

View Article and Find Full Text PDF

Intrathecal administration of NTS1 agonists reverses nociceptive behaviors in a rat model of neuropathic pain.

Eur J Pain

April 2012

Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.

Chronic neuropathic pain arising from peripheral nerve damage is a severe clinical issue where there is a major unmet medical need. We previously demonstrated that both neurotensin (NT) receptor subtypes 1 (NTS1) and 2 (NTS2) are involved in mediating the naloxone-insensitive antinociceptive effects of neurotensin in different analgesic tests including hotplate, tail-flick, and tonic pain. However, the role of these receptors in neuropathic pain management has been poorly investigated.

View Article and Find Full Text PDF

NT69L is a neurotensin (NT)(8-13) analog that binds the two major NT receptors, NTS1 and NTS2, and elicits similar behavioral effects as endogenous NT. Tolerance develops rapidly to some, but not to all of NT69L's effects, and to date, little is known about the mechanisms responsible for this tolerance. The development of tolerance appears to be more prevalent in behavioral effects mediated by NTS1 than by those mediated by NTS2, including hypothermia and thermal analgesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!