We previously reported a novel optical lithographic technique for the construction of a capillary network consisting of endothelial cells. To investigate the feasibility of clinical application in the treatment of ischemic diseases, capillary structures were formed on scaffolds made from amniotic membrane (AM) and implanted into mice. The capillary network remained in place for at least 5 days and blood perfusion through the implanted capillaries was histologically detected in an ear flap model. Moreover, blood was observed flowing through the capillary network implanted in abdominal subcutaneous tissue of mice at 5 days after insertion. Implantation of the AM capillary structure into the ischemic hind limbs of mice significantly increased reperfusion compared with controls (AM only). Blood flow was restored in the ischemic limbs to the level of corresponding nonischemic limbs as early as 9 days after surgical implantation. The treatment reversed ischemic symptoms, and ambulatory impairment was significantly improved. Thus, the implantation of a capillary network engineered ex vivo could have therapeutic potential for ischemic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.tea.2009.0097 | DOI Listing |
The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.
View Article and Find Full Text PDFBrain Commun
January 2025
Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus.
Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA) repeat units is considered highly penetrant, while (GAA) is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia.
View Article and Find Full Text PDFPathol Res Pract
January 2025
Department of Orthopaedics, the second Affiliated Hospital of Wannan Medical College, Wuhu 241000, China. Electronic address:
Background: Renal hemangioblastoma (HB) is a rare extra-central nervous system (CNS) tumor, typically not linked to Von Hippel-Lindau (VHL) Syndrome, and its underlying genetic drivers and molecular mechanisms remain elusive. The objective of this study is to investigate the clinicopathological features and molecular genetic changes of primary renal hemangioblastomas.
Methods: Herein, the clinical, imaging, clinicopathological features, and immunophenotype in 3 cases of renal HB were retrospectively analyzed.
Pharmaceuticals (Basel)
December 2024
Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
Human dental pulp stem cells (HDPSCs) with multi-lineage differentiation potential and migration ability are required for HDPSC-based bone and dental regeneration. Hispidulin is a naturally occurring flavonoid with diverse pharmacological activities, but its effects on biological properties of HDPSCs remain unknown. Therefore, we investigated the effects of hispidulin on the differentiation potential and migration ability of HDPSCs and elucidated their underlying mechanisms.
View Article and Find Full Text PDFBiomedicines
December 2024
LAETA-Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal.
Background: Understanding vascular development and the key factors involved in regulating angiogenesis-the growth of new blood vessels from pre-existing vasculature-is crucial for developing therapeutic approaches to promote wound healing. Computational techniques offer valuable insights into improving angiogenic strategies, leading to enhanced tissue regeneration and improved outcomes for chronic wound healing. While chorioallantoic membrane (CAM) models are widely used for examining fundamental mechanisms in vascular development, they lack quantification of essential parameters such as blood flow rate, intravascular pressure, and changes in vessel diameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!