Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A near-field scanning microwave microscopy (NSMM) is applied to investigate the local perpendicular dielectric information of single-phase multiferroic BiFeO(3) thin film and single crystal LaAlO(3) material. Our NSMM is composed of a vector network analyzer and a simple open-ended coaxial probe, which is quite different from the commercial probe with a lambda/4 coaxial resonator. The local permittivity is calculated quantitatively according to resonance frequency shift under the quasistatic microwave perturbation theory. We make use of the magnitude of reflection loss S(11) to construct an image reflecting the distribution of dielectric constant of a material. A homogeneous permittivity is observed in LaAlO(3) material and the inhomogeneous permittivity epsilon=215-250 for BiFeO(3) film is depicted from the change of feedback signal S(11) over an area of 100x100 microm(2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3258201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!