Free energies of stable and metastable pores in lipid membranes under tension.

J Chem Phys

Computational Biophysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: November 2009

The free energy profile of pore formation in a lipid membrane, covering the entire range from a density fluctuation in an intact bilayer to a large tension-stabilized pore, has been calculated by molecular dynamics simulations with a coarse-grained lipid model. Several fixed elongations are used to obtain the Helmholtz free energy as a function of pore size for thermodynamically stable, metastable, and unstable pores, and the system-size dependence of these elongations is discussed. A link to the Gibbs free energy at constant tension, commonly known as the Litster model, is established by a Legendre transformation. The change of genus upon pore formation is exploited to estimate the saddle-splay modulus or Gaussian curvature modulus of the membrane leaflets. Details are provided of the simulation approach, which combines the potential of mean constraint force method with a reaction coordinate based on the local lipid density.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3266839DOI Listing

Publication Analysis

Top Keywords

free energy
12
stable metastable
8
pore formation
8
free
4
free energies
4
energies stable
4
metastable pores
4
lipid
4
pores lipid
4
lipid membranes
4

Similar Publications

Energy-Efficient Collision-Free Machine/AGV Scheduling Using Vehicle Edge Intelligence.

Sensors (Basel)

December 2024

Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipments, College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China.

With the widespread use of autonomous guided vehicles (AGVs), avoiding collisions has become a challenging problem. Addressing the issue is not straightforward since production efficiency, collision avoidance, and energy consumption are conflicting factors. This paper proposes a novel edge computing method based on vehicle edge intelligence to solve the energy-efficient collision-free machine/AGV scheduling problem.

View Article and Find Full Text PDF

Enhanced Localization in Wireless Sensor Networks Using a Bat-Optimized Malicious Anchor Node Prediction Algorithm.

Sensors (Basel)

December 2024

Power Electronics, Machines and Control (PEMC) Research Institute, University of Nottingham, 15 Triumph Rd, Lenton, Nottingham NG7 2GT, UK.

The accuracy of node localization plays a crucial role in the performance and reliability of wireless sensor networks (WSNs), which are widely utilized in fields like security systems and environmental monitoring. The integrity of these networks is often threatened by the presence of malicious nodes that can disrupt the localization process, leading to erroneous positioning and degraded network functionality. To address this challenge, we propose the security-aware localization using bat-optimized malicious anchor prediction (BO-MAP) algorithm.

View Article and Find Full Text PDF

Participation of Polymer Materials in the Structure of Piezoelectric Composites.

Polymers (Basel)

December 2024

Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania.

This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications.

View Article and Find Full Text PDF

In this paper, we investigated the efficient metal-free phosphorus-nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl value and viscosity of the degradation products; focused on the changing rules of the hydroxyl value, viscosity, and molecular weight of polyols recovered from degradation products with different dosages of the metal-free PN catalyst; and determined the optimal experimental conditions of reaction temperature 180 °C, reaction time 3 h, and PN dosage 0.08%.

View Article and Find Full Text PDF

The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!