Trypanosoma brucei causes African trypanosomiasis in humans (HAT or African sleeping sickness) and Nagana in cattle. The disease threatens over 60 million people and uncounted numbers of cattle in 36 countries of sub-Saharan Africa and has a devastating impact on human health and the economy. On the other hand, Trypanosoma cruzi is responsible in South America for Chagas disease, which can cause acute illness and death, especially in young children. In this context, the discovery of novel drug targets in Trypanosome proteome is a major focus for the scientific community. Recently, many researchers have spent important efforts on the study of protein-protein interactions (PPIs) in pathogen Trypanosome species concluding that the low sequence identities between some parasite proteins and their human host render these PPIs as highly promising drug targets. To the best of our knowledge, there are no general models to predict Unique PPIs in Trypanosome (TPPIs). On the other hand, the 3D structure of an increasing number of Trypanosome proteins is reported in databases. In this regard, the introduction of a new model to predict TPPIs from the 3D structure of proteins involved in PPI is very important. For this purpose, we introduced new protein-protein complex invariants based on the Markov average electrostatic potential xi(k)(R(i)) for amino acids located in different regions (R(i)) of i-th protein and placed at a distance k one from each other. We calculated more than 30 different types of parameters for 7866 pairs of proteins (1023 TPPIs and 6823 non-TPPIs) from more than 20 organisms, including parasites and human or cattle hosts. We found a very simple linear model that predicts above 90% of TPPIs and non-TPPIs both in training and independent test subsets using only two parameters. The parameters were (d)xi(k)(s) = |xi(k)(s(1)) - xi(k)(s(2))|, the absolute difference between the xi(k)(s(i)) values on the surface of the two proteins of the pairs. We also tested nonlinear ANN models for comparison purposes but the linear model gives the best results. We implemented this predictor in the web server named TrypanoPPI freely available to public at http://miaja.tic.udc.es/Bio-AIMS/TrypanoPPI.php. This is the first model that predicts how unique a protein-protein complex in Trypanosome proteome is with respect to other parasites and hosts, opening new opportunities for antitrypanosome drug target discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr900827bDOI Listing

Publication Analysis

Top Keywords

trypanosome proteome
12
web server
8
targets trypanosome
8
protein-protein interactions
8
drug targets
8
protein-protein complex
8
linear model
8
model predicts
8
trypanosome
6
proteins
5

Similar Publications

The extracellular parasite Trypanosoma brucei evades the immune system of the mammalian host by periodically exchanging its variant surface glycoprotein (VSG) coat. Hereby, only one VSG gene is transcribed from one of 15 subtelomeric so-called bloodstream form expression sites (BES) at any given timepoint, while all other BESs are silenced. VSG gene expression is altered by homologous recombination using a large VSG gene repertoire or by a so-called in situ switch, which activates a previously silent BES.

View Article and Find Full Text PDF

Dynamic composition of stress granules in Trypanosoma brucei.

PLoS Pathog

October 2024

Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

Stress granules (SGs) are stress-induced RNA condensates consisting of stalled initiation complexes resulting from translational inhibition. The biochemical composition and function of SGs are highly diverse, and this diversity has been attributed to different stress conditions, signalling pathways involved and specific cell types. Interestingly, mRNA decay components, which are found in ubiquitous cytoplasmic foci known as processing bodies (PB), have also been identified in SG proteomes.

View Article and Find Full Text PDF

Sets of electrophilic probes are generally prepared using a narrow toolkit of robust reactions, which tends to limit both their structural and functional diversity. A unified synthesis of skeletally-diverse sulfonyl fluorides was developed that relied upon photoredox-catalysed dehydrogenative couplings between hetaryl sulfonyl fluorides and hydrogen donor building blocks. A set of 32 diverse probes was prepared, and then screened against Trypanosoma brucei.

View Article and Find Full Text PDF

Graphene quantum dots disrupt the mitochondrial potential of Trypanosoma brucei by interacting with the p18 subunit of ATP synthase F after endocytosis via the VSG recycling pathway.

J Colloid Interface Sci

February 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China. Electronic address:

Article Synopsis
  • Trypanosomiasis, caused by the parasite Trypanosoma brucei, poses significant health risks in Africa due to its ability to evade immunity through VSG changes, while its unique ATP synthase F subunit may be a potential drug target.
  • Researchers synthesized graphene quantum dots (GQDs) and studied their adhesion to T. brucei, revealing their ability to enter the parasite and affect its functions through various experimental techniques.
  • The study found that GQDs specifically bind to T. brucei's VSG, impair ATP synthase function, induce harmful reactive oxygen species (ROS), and disrupt essential biosynthetic pathways, presenting a promising strategy for developing new anti-trypanosome treatments.
View Article and Find Full Text PDF

Branched-chain amino acids modulate the proteomic profile of Trypanosoma cruzi metacyclogenesis induced by proline.

PLoS Negl Trop Dis

October 2024

Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil.

Trypanosoma cruzi, the causative agent of Chagas disease, has a complex life cycle that involves triatomine insects as vectors and mammals as hosts. The differentiation of epimastigote forms into metacyclic trypomastigotes within the insect vector is crucial for the parasite's life cycle progression. Factors influencing this process, including temperature, pH, and nutritional stress, along with specific metabolite availability, play a pivotal role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!