Photonic Nanojets.

J Comput Theor Nanosci

Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 USA.

Published: September 2009

This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet's minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter d(ν) perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as d(ν)3 for a fixed λ. This perturbation is much slower than the d(ν)6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000(th) the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782642PMC
http://dx.doi.org/10.1166/jctn.2009.1254DOI Listing

Publication Analysis

Top Keywords

photonic nanojets
12
microcylinder microsphere
8
far-field backscattered
8
backscattered power
8
microsphere
6
nanoparticle
5
photonic
4
nanojets paper
4
paper reviews
4
reviews substantial
4

Similar Publications

A new high-sensitivity, low-cost, Surface Enhanced Raman Spectroscopy (SERS) sensor allows for the rapid multiplex detection of foodborne pathogens in raw poultry. Self-assembled microspheres are used to pattern a hexagonal close-packed array of nanoantennas onto a side-polished multimode fiber core. Each microsphere focuses UV radiation to a photonic nanojet within a layer of photoresist on the fiber which allows the nanoantenna geometry to be controlled.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method to create living microlenses using engineered bacteria that produce a silica biomineralization enzyme, allowing for advanced control over their structure.
  • These bacteria form a shell of polysilicate, enabling them to focus light into intense nanojets that are significantly brighter than unmodified bacteria.
  • This innovative approach presents a cost-effective and durable solution for producing photonic components with unique optical properties, showcasing the potential of synthetic biology in the field.
View Article and Find Full Text PDF

Topologically protected optical pulling force on synthetic particles through photonic nanojet.

Nanophotonics

January 2024

Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.

Article Synopsis
  • A dielectric microsphere can gather light into a photonic nanojet (PNJ) that moves towards a near-infrared laser, while it was previously thought Janus particles with a metal layer couldn't stable produce PNJs.
  • Researchers found that synthetic Janus particles can also generate a PNJ and experience a backaction force due to their unique composition, even with non-resonant light.
  • The study reveals that these Janus particles show a unique hysteresis effect in the backaction force based on laser power changes, suggesting potential applications in manipulating and sorting irregular particles using light.
View Article and Find Full Text PDF

In this work, we study the imaging performance of microsphere-assisted microscopy (MAM) using microspheres with different refractive indices and immersion conditions under both bright-field illumination (BFI) and dark-field illumination (DFI). The experimental results show that the position of the photonic nanojet of the microsphere plays an important role in MAM imaging. The contrast in imaging is affected by the reflection from the microsphere, the background signal without the microsphere, and the electric field on the substrate surface.

View Article and Find Full Text PDF
Article Synopsis
  • This study looks at how to control special light beams called photonic nanojets (PNJs) using cylindrical shapes that can bend light.
  • It shows that by using different light styles, we can create different shapes of PNJs, like rod-like and tube-like, which work well even when they are small.
  • The findings could help in cool technology like trapping tiny particles and making super-clear images in science and engineering.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!