Collapse behavior and forces of multistack nanolines.

Nanotechnology

Department of Materials Engineering, Hanyang University, Ansan 426-791, Republic of Korea.

Published: January 2010

Two types of multistack nanolines (MNLs), Si-substrate (Si)/siliconoxynitride (SiON)/amorphous Si (a-Si)/ SiO(2) and Si/ SiO(2) /polycrystalline Si (poly-Si)/ SiO(2) were used to measure the collapse force and to investigate their collapse behavior by an atomic force microscope (AFM). The Si/SiON/a-Si/ SiO(2) MNL showed a larger length of fragment in the collapse patterns at a smaller collapse force. The Si/ SiO(2) /poly-Si/ SiO(2) MNL, however, demonstrated a smaller length of fragment at a higher applied collapse force. The collapse forces increased by the square of the linewidth in both Si/SiON/a-Si/ SiO(2) and Si/SiO(2) /poly-Si/ SiO(2) MNLs. Once an AFM tip touches an Si/SiON/a-Si/ SiO(2) line, which is a softer MNL, it was delaminated first at the Si/SiON interface. One end of the delaminated line was first broken and then the other end was bent until it was broken. A harder MNL, Si/ SiO(2) /poly-Si/ SiO(2), however, was broken at two ends simultaneously after the delamination occurred at the Si/ SiO(2) /poly-Si interface. The different collapse behaviors were attributed to the magnitude of adhesion forces at the stack material interfaces and the mechanical strength of MNLs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/1/015708DOI Listing

Publication Analysis

Top Keywords

si/ sio2
16
sio2
12
collapse force
12
si/sion/a-si/ sio2
12
/poly-si/ sio2
12
collapse
8
collapse behavior
8
multistack nanolines
8
sio2 mnl
8
length fragment
8

Similar Publications

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

Striking Improvement of N Selectivity in NH Oxidation Reaction on FeO-Based Catalysts via SiO Doping.

Inorg Chem

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The emission of NH has been reported to pose a serious threat to both human health and the environment. To efficiently eliminate NH, catalysts for the selective catalytic oxidation of NH (NH-SCO) have been intensively studied. FeO-based catalysts were found to exhibit superior NH oxidation activity; however, the low N selectivity made it less attractive in practical applications.

View Article and Find Full Text PDF

Electropositive Magnetic Fluorescent Nanoprobe-Mediated Immunochromatographic Assay for the Ultrasensitive and Simultaneous Detection of Bacteria.

Adv Sci (Weinh)

January 2025

Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.

Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.

View Article and Find Full Text PDF

A low-temperature ionic liquid system for topochemical synthesis of Si nanospheres for high-performance lithium-ion batteries.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).

View Article and Find Full Text PDF

Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!