Production of bioethanol from sugarcane bagasse: Status and perspectives.

Bioresour Technol

Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Colombia.

Published: July 2010

Lignocellulosic biomass is considered as the future feedstock for ethanol production because of its low cost and its huge availability. One of the major lignocellulosic materials found in great quantities to be considered, especially in tropical countries, is sugarcane bagasse (SCB). This work deals with its current and potential transformation to sugars and ethanol, considering pretreatment technologies, detoxification methods and biological transformation. Some modeling aspects are exposed briefly. Finally stability is discussed for considering the high nonlinear phenomena such as multiplicity and oscillations, which make more complex the control as a result of the inhibition problems during fermentation when furfural and formic acid from SCB hydrolysis are not absent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2009.10.097DOI Listing

Publication Analysis

Top Keywords

sugarcane bagasse
8
production bioethanol
4
bioethanol sugarcane
4
bagasse status
4
status perspectives
4
perspectives lignocellulosic
4
lignocellulosic biomass
4
biomass considered
4
considered future
4
future feedstock
4

Similar Publications

Recombinant expression and characterization of the family 5 cellulase from in BL21-CodonPlus (DE3)-RIPL.

Biochem Biophys Rep

March 2025

Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, Vladivostok, 690922, Russia.

B. velezensis RB. IBE29 is a chitinolytic bacterium originally isolated from agricultural soil of Vietnam.

View Article and Find Full Text PDF

Green synthesis of low-cost graphene oxide-nano zerovalent iron composite from solid waste for photocatalytic removal of antibiotics.

iScience

December 2024

Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235 West Bengal, India.

This study develops a graphene oxide-nano zerovalent iron (GO-nZVI) composite for the efficient removal of tetracycline and ciprofloxacin from water. The composite was synthesized using sugarcane bagasse as the matrix for graphene oxide (GO) and Sal leaf extract to reduce iron into nano zerovalent iron (nZVI). Microscopic analysis confirmed multiple GO layers with nZVI particles on their surface, while XRD and Raman spectroscopy verified the crystalline nature of the composite.

View Article and Find Full Text PDF

The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

This work reports the obtention of Si,N,S-CQDs from sugar cane bagasse and their inhibitory action on the mild steel corrosion in 1 mol L HCl solution. The CQDs were successfully obtained and characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Dynamic light scattering, Raman, and UV-vis techniques, also showing endogenous self-doping. The anti-corrosive activity of CQDs was investigated by gravimetric tests, potentiodynamic polarization curves, electrochemical impedance measurements, atomic force microscopy, and scanning electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!