Novel sample preparation approaches for HPLC bioanalysis based on the phenomenon that acetonitrile can be separated from water by adding salts or cooling at subzero temperatures have been reported. These two methods are superior to conventional liquid-liquid extraction since the separated acetonitrile phase can be directly injected to the RP-LC system. However, the salting-out method suffers from a potential problem that the remained salt in the acetonitrile phase may harm the MS detector, while the subzero-temperature method is troublesome to operate. Here, we have reported a similar phase separation phenomenon that the acetonitrile aqueous mixture can be separated by adding a hydrophobic solvent; and capitalising on this phase transition phenomenon, we have proposed an alternative approach, named solvent induced phase transition extraction (SIPTE), to extract drug from plasma for HPLC-MS analysis. The proposed SIPTE method is much simpler and avoids contaminating the MS detector. Three structurally diverse drugs were selected as test compounds to design the SIPTE method and to validate the efficiency of this method. The four goals of plasma sample pretreatment for HPLC-MS analysis, i.e. removal of proteins, removal of other low-molecular interferences, preconcentration of the analytes of interest, and matching the sample solvent with the HPLC-MS system, can be rapidly performed in a very simple step by using the SIPTE method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2009.11.037DOI Listing

Publication Analysis

Top Keywords

phase transition
12
sipte method
12
hydrophobic solvent
8
solvent induced
8
induced phase
8
transition extraction
8
phenomenon acetonitrile
8
acetonitrile phase
8
hplc-ms analysis
8
phase
6

Similar Publications

Blood from septic patients with necrotising soft tissue infection treated with hyperbaric oxygen reveal different gene expression patterns compared to standard treatment.

BMC Med Genomics

January 2025

Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.

Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.

View Article and Find Full Text PDF

Molecular arrangement in the chiral smectic phases of the glassforming (S)-4'-(1-methylheptylcarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]benzoate is investigated by X-ray diffraction. An increased correlation length of the positional short-range order in the supercooled state agrees with the previous assumption of the hexatic smectic phase. However, the registered X-ray diffraction patterns are not typical for the hexatic phases.

View Article and Find Full Text PDF

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4-  salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6-  complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!