Helper-dependent adenoviral (HDAd) vectors were developed primarily for genetic disease therapy by deleting all coding regions for attenuating the host cellular immune response to adenovirus (Ad) and long-lasting gene expression. Recently Harui et al. reported that HDAd vaccine could stimulate superior transgene-specific cytotoxic T lymphocyte (CTL) and antibody responses via the intraperitoneal route, compared to first-generation adenoviral (FGAd) vaccine. This prompted us to explore the potential of HDAd as a vaccine vector administrated intranasally. In this study, we prepared HDAd and FGAd vectors expressing enhanced green fluorescent protein (EGFP), respectively, and compared their efficacy in mice. Mice were immunized intranasally with 5x10(9) vp HDAd or FGAd vector particles. Despite stimulating similar anti-Ad antibody responses with FGAd vaccine in the prime/boost strategy, HDAd vector expressing EGFP displayed superior transgene-specific serum IgG, mucosal IgA and cellular immune response, with the characterization of balanced or mixed Th1/Th2 CD4+ T-cell responses. Meanwhile, a single dose of intranasal (i.n.) vaccine of HDAd-EGFP induced a serum IgG response with more efficacy than FGAd-EGFP. In addition, i.n. boost immunization enhanced transgene-specific humoral and cellular responses, compared to single i.n. HDAd-EGFP immunization. Our results suggest that HDAd has potential for a mucosal vaccine vector via i.n. route, which will be useful for the development of vaccines against respiratory viruses, such as respiratory syncytial virus and influenza virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.11.152DOI Listing

Publication Analysis

Top Keywords

helper-dependent adenoviral
8
cellular immune
8
immune response
8
hdad vaccine
8
superior transgene-specific
8
antibody responses
8
fgad vaccine
8
vaccine vector
8
hdad fgad
8
serum igg
8

Similar Publications

Atherosclerosis is caused by the accumulation of cholesterol within intimal smooth muscle cells (SMCs) and macrophages. However, the transporter ATP-binding cassette subfamily A, member 1 (ABCA1), can remove cholesterol from these intimal, cells reducing atherosclerosis. Antagomir-mediated inhibition of miR-33a-5p, a microRNA that represses ABCA1 translation, promotes ABCA1-dependent cholesterol efflux and may impede atherosclerosis development.

View Article and Find Full Text PDF

Background: Oncolytic adenoviruses (OAds) are the most clinically tested viral vectors for solid tumors. However, most clinically tested "Armed" OAds show limited antitumor effects in patients with various solid tumors even with increased dosages and multiple injections. We developed a binary oncolytic/helper-dependent adenovirus system (CAdVEC), in which tumors are coinfected with an OAd and a non-replicating helper-dependent Ad (HDAd).

View Article and Find Full Text PDF

Introducing a hemoglobin G-Makassar variant in HSCs by in vivo base editing treats sickle cell disease in mice.

Mol Ther

December 2024

University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA; University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA.

Article Synopsis
  • Researchers successfully corrected the sickle cell mutation in hematopoietic stem cells (HSCs) using a technique called in vivo base editing, transforming the sickle mutation into a benign variant.
  • The method involved creating adenoviral vectors that effectively delivered the editing tool, resulting in a 35% conversion rate of the mutation in lab settings and 88% in a mouse model.
  • The treated mice showed no side effects and improved disease symptoms, indicating that this approach could be a practical treatment option for sickle cell disease, especially in areas with limited resources.
View Article and Find Full Text PDF

The outbreak of coronavirus disease 19 (COVID-19) has highlighted the demand for vaccines that are safe and effective in inducing systemic and airway mucosal immunity against the aerosol transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we developed a novel helper-dependent adenoviral vector-based COVID-19 mucosal vaccine encoding a full-length SARS-CoV-2 spike protein (HD-Ad-FS). Through intranasal immunization (single-dose and prime-boost regimens), we demonstrated that the HD-Ad-FS was immunogenic and elicited potent systemic and airway mucosal protection in BALB/c mice, transgenic ACE2 (hACE2) mice, and hamsters.

View Article and Find Full Text PDF

Viral vector gene therapy has immense promise for treating central nervous system (CNS) disorders. Although adeno-associated virus vectors (AAVs) have had success, their small packaging capacity limits their utility to treat the root cause of many CNS disorders. Adenoviral vectors (Ad) have tremendous potential for CNS gene therapy approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!